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Experiment-1: 

 
1. Creation of a datawarehouse. 

 
A. Build Data Warehouse/Data Mart (using open source tools like Pentaho Data 

Integration Tool, Pentaho Business Analytics; or other data warehouse tools like 

Microsoft-SSIS,Informatica,Business Objects,etc.,) 

 
A.(i) Identify source tables and populate sample data. 

 

 
The data warehouse contains 4 tables: 

 
1. Date dimension: contains every single date from 2006 to 2016. 

2. Customer dimension: contains 100 customers. To be simple we’ll make it type 1 so we 

don’t create a new row for each change. 

3. Van dimension: contains 20 vans. To be simple we’ll make it type 1 so we don’t create a 

new row for each change. 

4. Hire fact table: contains 1000 hire transactions since 1st Jan 2011. It is a daily snapshot fact 

table so that every day we insert 1000 rows into this fact table. So over time we can track 

the changes of total bill, van charges, satnav income, etc. 

 

Create the source tables and populate them 

 
So now we are going to create the 3 tables in HireBase database: Customer, Van, and Hire. Then 

we populate them. 

 

First I’ll show you how it looks when it’s done: 
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Customer table: 

 

Van table: 
 

 

Hire table: 

 

 
 

 
 

And here is the script to create and populate them: 
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-- Create database 
create database HireBase 

go 

use HireBase 

go 

 

-- Create customer table 

if exists (select * from sys.tables where name = 'Customer') 

drop table Customer 

go 

 

create table Customer 

( CustomerId varchar(20) not null primary key, 

CustomerName varchar(30), DateOfBirth date, Town varchar(50), 

TelephoneNo varchar(30), DrivingLicenceNo varchar(30), Occupation varchar(30) 

) 

go 

 
-- Populate Customer 
truncate table Customer 
go 

 

declare @i int, @si varchar(10), @startdate date 

set @i = 1 

while @i <= 100 
begin 

set @si = right('0'+CONVERT(varchar(10), @i),2) 

insert into Customer 

( CustomerId, CustomerName, DateOfBirth, Town, TelephoneNo, DrivingLicenceNo, 

Occupation) 

values 

( 'N'+@si, 'Customer'+@si, DATEADD(d,@i-1,'2000-01-01'), 'Town'+@si, 'Phone'+@si, 

'Licence'+@si, 'Occupation'+@si) 

set @i = @i + 1 

end 

go 

 

select * from Customer 

 

-- Create Van table 

if exists (select * from sys.tables where name = 'Van') 

drop table Van 

go 
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create table Van 

( RegNo varchar(10) not null primary key, 
Make varchar(30), Model varchar(30), [Year] varchar(4), 

Colour varchar(20), CC int, Class varchar(10) 

) 

go 

 

-- Populate Van table 

truncate table Van 

go 
 

declare @i int, @si varchar(10) 

set @i = 1 

while @i <= 20 

begin 

set @si = convert(varchar, @i) 

insert into Van 

( RegNo, Make, Model, [Year], Colour, CC, Class) 

values 

( 'Reg'+@si, 'Make'+@si, 'Model'+@si, 
case @i%4 when 0 then 2008 when 1 then 2009 when 2 then 2010 when 3 then 2011 end, 

case when @i%5<3 then 'White' else 'Black' end, 

case @i%3 when 0 then 2000 when 1 then 2500 when 2 then 3000 end, 

case @i%3 when 0 then 'Small' when 1 then 'Medium' when 2 then 'Large' end) 

set @i = @i + 1 

end 

go 
 

select * from Van 

 

-- Create Hire table 

if exists (select * from sys.tables where name = 'Hire') 

drop table Hire 

go 

 

create table Hire 

( HireId varchar(10) not null primary key, 

HireDate date not null, 

CustomerId varchar(20) not null, 
RegNo varchar(10), NoOfDays int, VanHire money, SatNavHire money, 

Insurance money, DamageWaiver money, TotalBill money 

) 

go 
 

  



WISE                    III B.Tech I Sem DWDM Lab Manual                 R20 [Year] 
 

WISE Page 5  

 

-- Populate Hire table 

truncate table Hire 
go 

 

declare @i int, @si varchar(10), @DaysFrom1stJan int, @CustomerId int, @RegNo int, @mi int 

set @i = 1 

while @i <= 1000 

begin 

set @si = right('000'+convert(varchar(10), @i),4) -- string of i 

set @DaysFrom1stJan = (@i-1)%200 --The Hire Date is derived from i modulo 200 

set @CustomerId = (@i-1)%100+1 --The CustomerId is derived from i modulo 100 

set @RegNo = (@i-1)%20+1 --The Van RegNo is derived from i modulo 20 

set @mi = (@i-1)%3+1 --i modulo 3 

insert into Hire (HireId, HireDate, CustomerId, RegNo, NoOfDays, VanHire, SatNavHire, 

Insurance, DamageWaiver, TotalBill) 

values ('H'+@si, DateAdd(d, @DaysFrom1stJan, '2011-01-01'), 

left('N0'+CONVERT(varchar(10),@CustomerId),3), 'Reg'+CONVERT(varchar(10), @RegNo), 

@mi, @mi*100, @mi*10, @mi*20, @mi*40, @mi*170) 

set @i += 1 

end 

go 
 

select * from Hire 

 
Create the Data Warehouse 

 
So now we are going to create the 3 dimension tables and 1 fact table in the data warehouse: 

DimDate, DimCustomer, DimVan and FactHire. We are going to populate the 3 dimensions but 

we’ll leave the fact table empty. The purpose of this article is to show how to populate the fact 

table using SSIS. 

 

First I’ll show you how it looks when it’s done: 
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Date Dimension: 

 

 

 
Customer Dimension: 

 

 

Van Dimension: 
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And then we do it. This is the script to create and populate those dim and fact tables: 

 
-- Create the data warehouse 
create database TopHireDW 
go 

use TopHireDW 

go 

 

-- Create Date Dimension 

if exists (select * from sys.tables where name = 'DimDate') 

drop table DimDate 

go 

 

create table DimDate 

( DateKey int not null primary key, 

[Year] varchar(7), [Month] varchar(7), [Date] date, DateString varchar(10)) 

go 

 

-- Populate Date Dimension 

truncate table DimDate 

go 

 

declare @i int, @Date date, @StartDate date, @EndDate date, @DateKey int, 

@DateString varchar(10), @Year varchar(4), 

@Month varchar(7), @Date1 varchar(20) 

set @StartDate = '2006-01-01' 

set @EndDate = '2016-12-31' 

set @Date = @StartDate 
 

insert into DimDate (DateKey, [Year], [Month], [Date], DateString) 

values (0, 'Unknown', 'Unknown', '0001-01-01', 'Unknown') --The unknown row 

 

while @Date <= @EndDate 

begin 

set @DateString = convert(varchar(10), @Date, 20) 

set @DateKey = convert(int, replace(@DateString,'-','')) 

set @Year = left(@DateString,4) 

set @Month = left(@DateString, 7) 

insert into DimDate (DateKey, [Year], [Month], [Date], DateString) 

values (@DateKey, @Year, @Month, @Date, @DateString) 

set @Date = dateadd(d, 1, @Date) 

end 

go 
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-- Create Customer dimension 

if exists (select * from sys.tables where name = 'DimCustomer') 

drop table DimCustomer 

go 

 

create table DimCustomer 

( CustomerKey int not null identity(1,1) primary key, 

CustomerId varchar(20) not null, 

CustomerName varchar(30), DateOfBirth date, Town varchar(50), 

TelephoneNo varchar(30), DrivingLicenceNo varchar(30), Occupation varchar(30) 

) 

go 
 

insert into DimCustomer (CustomerId, CustomerName, DateOfBirth, Town, TelephoneNo, 

DrivingLicenceNo, Occupation) 

select * from HireBase.dbo.Customer 

select * from DimCustomer 

-- Create Van dimension 

if exists (select * from sys.tables where name = 'DimVan') 

drop table DimVan 

go 

 

create table DimVan 

( VanKey int not null identity(1,1) primary key, 

RegNo varchar(10) not null, 

Make varchar(30), Model varchar(30), [Year] varchar(4), 

Colour varchar(20), CC int, Class varchar(10) 

) 
go 

 

insert into DimVan (RegNo, Make, Model, [Year], Colour, CC, Class) 

select * from HireBase.dbo.Van 

go 
 

select * from DimVan 

 

-- Create Hire fact table 

if exists (select * from sys.tables where name = 'FactHire') 

drop table FactHire 

go 



MRCET Page 12 

WISE                    III B.Tech I Sem DWDM Lab Manual                 R20 
 

 

 

create table FactHire 

( SnapshotDateKey int not null, --Daily periodic snapshot fact table 

HireDateKey int not null, CustomerKey int not null, VanKey int not null, --Dimension Keys 

HireId varchar(10) not null, --Degenerate Dimension 

NoOfDays int, VanHire money, SatNavHire money, 

Insurance money, DamageWaiver money, TotalBill money 

) 
go 

 

select * from FactHire 

 
A.(ii). Design multi-demesional data models namely Star, Snowflake and Fact 

Constellation schemas for any one enterprise (ex. Banking,Insurance, Finance, 

Healthcare, manufacturing, Automobiles,sales etc). 

 
Ans: SchemaDefinition 

 

Multidimensional schema is defined using Data Mining Query Language (DMQL). The two 

primitives, cube definition and dimension definition, can be used for defining the data warehouses 

and data marts. 

 

StarSchema 

 
 Each dimension in a star schema is represented with only one-dimension table. 

 

 This dimension table contains the set of attributes. 

 

 The following diagram shows the sales data of a company with respect to the four 

dimensions, namely time, item, branch, and location. 

 

 There is a fact table at the center. It contains the keys to each of four dimensions. 

 

 The fact table also contains the attributes, namely dollars sold and units sold. 
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SnowflakeSchema 

 

 Some dimension tables in the Snowflake schema are normalized. 

 

 The normalization splits up the data into additional tables. 

 

 Unlike Star schema, the dimensions table in a snowflake schema is normalized. For 

example, the item dimension table in star schema is normalized and split into two 

dimension tables, namely item and supplier table. 

 

 Now the item dimension table contains the attributes item_key, item_name, type, brand, 

and supplier-key. 

 

 The supplier key is linked to the supplier dimension table. The supplier dimension table 

contains the attributes supplier_key and supplier_type. 
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Fact Constellation Schema 
 

 

 

 A fact constellation has multiple fact tables. It is also known as galaxy schema. 

s 

 The following diagram shows two fact tables, namely sales and shipping. 

 

 The sales fact table is same as that in the star schema. 

 

 The shipping fact table has the five dimensions, namely item_key, time_key, shipper_key, 

from_location, to_location. 

 

 The shipping fact table also contains two measures, namely dollars sold and units sold. 

 

 It is also possible to share dimension tables between fact tables. For example, time, item, 

and location dimension tables are shared between the sales and shipping fact table. 
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A.(iii) Write ETL scripts and implement using data warehouse tools. 

Ans: 

ETL comes from Data Warehousing and stands for Extract-Transform-Load. ETL covers a process 

of how the data are loaded from the source system to the data warehouse. Extraction– 

transformation–loading (ETL) tools are pieces of software responsible for the extraction of data 

from several sources, its cleansing, customization, reformatting, integration, and insertion into a 

data warehouse. 

Building the ETL process is potentially one of the biggest tasks of building a warehouse; it is 

complex, time consuming, and consumes most of data warehouse project’s implementation efforts, 

costs, and resources. 

Building a data warehouse requires focusing closely on understanding three main areas: 

1. Source Area- The source area has standard models such as entity relationship diagram. 

2. Destination Area- The destination area has standard models such as star schema. 

3. Mapping Area- But the mapping area has not a standard model till now. 
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Abbreviations 

 ETL-extraction–transformation–loading 

 DW-data warehouse 

 DM- data mart 

 OLAP- on-line analytical processing 

 DS-data sources 

 ODS- operational data store 

 DSA- data staging area 

 DBMS- database management system 

 OLTP-on-line transaction processing 

 CDC-change data capture 

 SCD-slowly changing dimension 

 FCME- first-class modeling elements 

 EMD-entity mapping diagram 

 DSA-data storage area 

 

ETL Process: 

 

Extract 

The Extract step covers the data extraction from the source system and makes it accessible for 

further processing. The main objective of the extract step is to retrieve all the required data from 

the source system with as little resources as possible. The extract step should be designed in a way 

that it does not negatively affect the source system in terms or performance, response time or any 

kind of locking. 

 
There are several ways to perform the extract: 

 
 Update notification - if the source system is able to provide a notification that a record has been 

changed and describe the change, this is the easiest way to get the data. 

 Incremental extract - some systems may not be able to provide notification that an update has 

occurred, but they are able to identify which records have been modified and provide an extract of 

such records. During further ETL steps, the system needs to identify changes and propagate it 

down. Note, that by using daily extract, we may not be able to handle deleted records properly. 

 Full extract - some systems are not able to identify which data has been changed at all, so a full 

extract is the only way one can get the data out of the system. The full extract requires keeping a 

copy of the last extract in the same format in order to be able to identify changes. Full extract 

handles deletions as well. 
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Transform 

The transform step applies a set of rules to transform the data from the source to the target. This 

includes converting any measured data to the same dimension (i.e. conformed dimension) using the 

same units so that they can later be joined. The transformation step also requires joining data from 

several sources, generating aggregates, generating surrogate keys, sorting, deriving new calculated 

values, and applying advanced validation rules. 

 
Load 

During the load step, it is necessary to ensure that the load is performed correctly and with as little 

resources as possible. The target of the Load process is often a database. In order to make the load 

process efficient, it is helpful to disable any constraints and indexes before the load and enable 

them back only after the load completes. The referential integrity needs to be maintained by ETL 

tool to ensure consistency. 

 
ETL method – nothin’ but SQL 

 

ETL as scripts that can just be run on the database.These scripts must be re-runnable: they should 
be able to be run without modification to pick up any changes in the legacy data, and automatically 

work out how to merge the changes into the new schema. 
 

In order to meet the requirements, my scripts must: 

 

1. INSERT rows in the new tables based on any data in the source that hasn’t already been created in 

the destination 

2. UPDATE rows in the new tables based on any data in the source that has already been inserted in 

the destination 

3. DELETE rows in the new tables where the source data has been deleted 

 

Now, instead of writing a whole lot of INSERT, UPDATE and DELETE statements, I thought 

“surely MERGE would be both faster and better” – and in fact, that has turned out to be the case. 

By writing all the transformations as MERGE statements, I’ve satisfied all the criteria, while also 

making my code very easily modified, updated, fixed and rerun. If I discover a bug or a change 

in requirements, I simply change the way the column is transformed in the MERGE statement, and 

re-run the statement. It then takes care of working out whether to insert, update or delete each row. 
 

My next step was to design the architecture for my custom ETL solution. I went to the dba with the 

following design, which was approved and created for me: 

 

1. create two new schemas on the new 11g database: LEGACY and MIGRATE 

2. take a snapshot of all data in the legacy database, and load it as tables in the LEGACY schema 

3. grant read-only on all tables in LEGACY to MIGRATE 

4. grant CRUD on all tables in the target schema to MIGRATE. 
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For example, in the legacy database we have a table: 
 

 
In the new model, we have a new table that represents the same kind of information: 

 

LEGACY.BMS_PARTIES( 

par_id NUMBER PRIMARY KEY, 

par_domain VARCHAR2(10) NOT NULL, 

par_first_name VARCHAR2(100) , 

 
par_last_name VARCHAR2(100), 

par_dob DATE, 

par_business_name VARCHAR2(250), 

created_by VARCHAR2(30) NOT NULL, 

creation_date DATE NOT NULL, 

last_updated_by VARCHAR2(30), 

 
last_update_date DATE) 

NEW.TBMS_PARTY( 

party_id NUMBER(9) PRIMARY KEY, 

party_type_code VARCHAR2(10) NOT NULL, 

first_name VARCHAR2(50), 

surname VARCHAR2(100), 
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This was the simplest transformation you could possibly think of – the mapping from one to the 
other is 1:1, and the columns almost mean the same thing. 

 

The solution scripts start by creating an intermediary table: 
 

date_of_birth DATE, 

business_name  VARCHAR2(300), 

db_created_by VARCHAR2(50) NOT NULL, 

db_created_on DATE DEFAULT SYSDATE NOT NULL, 

db_modified_by VARCHAR2(50), 

 
db_modified_on DATE, 

 

version_id NUMBER(12) DEFAULT 1 NOT NULL) 

MIGRATE.TBMS_PARTY( 

old_par_id NUMBER PRIMARY KEY, 

party_id NUMBER(9) NOT NULL, 

party_type_code VARCHAR2(10) NOT NULL, 

first_name VARCHAR2(50), 

surname VARCHAR2(100), 

date_of_birth DATE, 

business_name  VARCHAR2(300), 

db_created_by VARCHAR2(50), 
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The second step is the E and T parts of “ETL”: I query the legacy table, transform the data right  

there in the query, and insert it into the intermediary table. However, since I want to be able to re• 

run this script as often as I want, I wrote this as a MERGE statement: 
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db_created_on DATE, 

db_modified_by VARCHAR2(50), 

db_modified_on DATE, 

deleted CHAR(1)) 

MERGE INTO MIGRATE.TBMS_PARTY dest 

 
USING ( 

SELECT par_id AS old_par_id, 

par_id AS party_id, 

CASE par_domain 

WHEN 'P' THEN 'PE' /*Person*/ 

WHEN 'O' THEN 'BU' /*Business*/ 

END AS party_type_code, 

par_first_name AS first_name, 

 
par_last_name AS surname, 

par_dob AS date_of_birth, 

par_business_name AS business_name, 
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created_by AS db_created_by, 

creation_date  AS db_created_on, 

last_updated_by AS db_modified_by, 

last_update_date AS db_modified_on 

FROM LEGACY.BMS_PARTIES s 

WHERE NOT EXISTS ( 

SELECT null 

 
FROM MIGRATE.TBMS_PARTY d 

 
WHERE d.old_par_id = s.par_id 

 
AND (d.db_modified_on = s.last_update_date 

OR (d.db_modified_on IS NULL 

AND s.last_update_date IS NULL)) 

 
) 

 
) src 

 
ON (src.OLD_PAR_ID = dest.OLD_PAR_ID) 

WHEN MATCHED THEN UPDATE SET 

party_id = src.party_id , 

party_type_code = src.party_type_code , 

first_name  = src.first_name  , 
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A.(iv) Perform Various OLAP operations such slice, dice, roll up, drill up and pivot. 

Ans: OLAPOPERATIONS 

Online Analytical Processing Server (OLAP) is based on the multidimensional data model. It 

allows managers, and analysts to get an insight of the information through fast, consistent, and 

interactive access to information. 

 

OLAP operations in multidimensional data. 

Here is the list of OLAP operations: 

 Roll-up 

 Drill-down 

 Slice and dice 

 Pivot (rotate) 

Roll-up 

Roll-up performs aggregation on a data cube in any of the following ways: 

 
 By climbing up a concept hierarchy for a dimension 

 By dimension reduction 

The following diagram illustrates how roll-up works. 

surname = src.surname , 

date_of_birth = src.date_of_birth , 

business_name = src.business_name , 

db_created_by = src.db_created_by , 

db_created_on = src.db_created_on , 

db_modified_by = src.db_modified_by , 
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 Roll-up is performed by climbing up a concept hierarchy for the dimension location. 

 

 Initially the concept hierarchy was "street < city < province < country". 

 

 On rolling up, the data is aggregated by ascending the location hierarchy from the level of 

city to the level of country. 

 

 The data is grouped into cities rather than countries. 

 

 When roll-up is performed, one or more dimensions from the data cube are removed. 

 

Drill-down 

Drill-down is the reverse operation of roll-up. It is performed by either of the following ways: 

 
 By stepping down a concept hierarchy for a dimension 

 By introducing a new dimension. 

The following diagram illustrates how drill-down works: 
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 Drill-down is performed by stepping down a concept hierarchy for the dimension time. 

 

 Initially the concept hierarchy was "day < month < quarter < year." 

 

 On drilling down, the time dimension is descended from the level of quarter to the level of 

month. 

 

 When drill-down is performed, one or more dimensions from the data cube are added. 

 

 It navigates the data from less detailed data to highly detailed data. 

 

 
Slice 

The slice operation selects one particular dimension from a given cube and provides a new sub- 

cube. Consider the following diagram that shows how slice works. 
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 Here Slice is performed for the dimension "time" using the criterion time = "Q1". 

 

 It will form a new sub-cube by selecting one or more dimensions. 

 

Dice 

Dice selects two or more dimensions from a given cube and provides a new sub-cube. Consider 

the following diagram that shows the dice operation. 
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The dice operation on the cube based on the following selection criteria involves three 

dimensions. 

 

 (location = "Toronto" or "Vancouver") 

 (time = "Q1" or "Q2") 

 (item =" Mobile" or "Modem") 

Pivot 

The pivot operation is also known as rotation. It rotates the data axes in view in order to provide 

an alternative presentation of data. Consider the following diagram that shows the pivot operation. 
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Experiment-2: 

2. Explore machine learning tool “WEKA” 

A.Explore WEKA Data Mining/Machine Learning Toolkit 

B.(i) Downloading and/or installation of WEKA data mining toolkit. 

Ans: Install Steps for WEKA a Data Mining Tool 

 

1. Download the software as your requirements from the below given link. 

http://www.cs.waikato.ac.nz/ml/weka/downloading.html 

2. The Java is mandatory for installation of WEKA so if you have already Java on your 

machine then download only WEKA else download the software with JVM. 

3. Then open the file location and double click on the file 
 
 
 

 

 
4. Click Next 

http://www.cs.waikato.ac.nz/ml/weka/downloading.html
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5. Click I Agree. 
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6. As your requirement do the necessary changes of settings and click Next. Full and 

Associate files are the recommended settings. 

 

 
7. Change to your desire installation location. 
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8. If you want a shortcut then check the box and click Install. 

 

 
9. The Installation will start wait for a while it will finish within a minute. 
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10. After complete installation click on Next. 

 

 

11. Hurray !!!!!!! That’s all click on the Finish and take a shovel and start Mining. Best of 

Luck. 
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This is the GUI you get when started. You have 4 options Explorer, Experimenter, 

KnowledgeFlow and Simple CLI. 

B.(ii)Understand the features of WEKA tool kit such as Explorer, Knowledge flow interface, 

Experimenter, command-line interface. 

 
Ans: WEKA 

 

Weka is created by researchers at the university WIKATO in New Zealand. University of 

Waikato, Hamilton, New Zealand Alex Seewald (original Command-line primer) David Scuse 

(original Experimenter tutorial) 

 
 It is java based application. 

 It is collection often source, Machine Learning Algorithm. 

 The routines (functions) are implemented as classes and logically arranged in packages. 

 It comes with an extensive GUI Interface. 

 Weka routines can be used standalone via the command line interface. 

 
The Graphical User Interface;- 

 
The Weka GUI Chooser (class weka.gui.GUIChooser) provides a starting point for 

launching Weka’s main GUI applications and supporting tools. If one prefers a MDI (“multiple 

document interface”) appearance, then this is provided by an alternative launcher called “Main” 
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(class weka.gui.Main). The GUI Chooser consists of four buttons—one for each of the four major 

Weka applications—and four menus. 

 

 
 

 

 

 
The buttons can be used to start the following applications: 

 
 Explorer An environment for exploring data with WEKA (the rest of this Documentation 

deals with this application in more detail). 

 Experimenter An environment for performing experiments and conducting statistical tests 

between learning schemes. 

 
 Knowledge Flow This environment supports essentially the same functions as the Explorer but 

with a drag-and-drop interface. One advantage is that it supports incremental learning. 

 
 SimpleCLI Provides a simple command-line interface that allows direct execution of WEKA 

commands for operating systems that do not provide their own command line interface. 
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1. Explorer 

 
The Graphical user interface 

 
 Section Tabs 

 
At the very top of the window, just below the title bar, is a row of tabs. When the Explorer 

is first started only the first tab is active; the others are grayed out. This is because it is 

necessary to open (and potentially pre-process) a data set before starting to explore the data. 

The tabs are as follows: 

 
1. Preprocess. Choose and modify the data being acted on. 

2. Classify. Train & test learning schemes that classify or perform regression 

3. Cluster. Learn clusters for the data. 

4. Associate. Learn association rules for the data. 

5. Select attributes. Select the most relevant attributes in the data. 

6. Visualize. View an interactive 2D plot of the data. 

 

 
Once the tabs are active, clicking on them flicks between different screens, on which the 

respective actions can be performed. The bottom area of the window (including the status box, the 

log button, and the Weka bird) stays visible regardless of which section you are in. The Explorer 

can be easily extended with custom tabs. The Wiki article “Adding tabs in the Explorer” 

explains this in detail. 

 

 
2. Weka Experimenter:- 

 

The Weka Experiment Environment enables the user to create, run, modify, and analyze 

experiments in a more convenient manner than is possible when processing the schemes 

individually. For example, the user can create an experiment that runs several schemes against a 

series of datasets and then analyze the results to determine if one of the schemes is (statistically) 

better than the other schemes. 
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The Experiment Environment can be run from the command line using the Simple CLI. For 

example, the following commands could be typed into the CLI to run the OneR scheme on the Iris 

dataset using a basic train and test process. (Note that the commands would be typed on one line 

into the CLI.) While commands can be typed directly into the CLI, this technique is not particularly 

convenient and the experiments are not easy to modify. The Experimenter comes in two flavors’, 

either with a simple interface that provides most of the functionality one needs for experiments, or 

with an interface with full access to the Experimenter’s capabilities. You can 

choose between those two with the Experiment Configuration Mode radio buttons: 

 
 Simple 

 Advanced 

 
Both setups allow you to setup standard experiments, that are run locally on a single machine, 

or remote experiments, which are distributed between several hosts. The distribution of 

experiments cuts down the time the experiments will take until completion, but on the other hand 

the setup takes more time. The next section covers the standard experiments (both, simple and 

advanced), followed by the remote experiments and finally the analyzing of the results. 
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3. Knowledge Flow 

 

Introduction 

 
The Knowledge Flow provides an alternative to the Explorer as a graphical front end to 

WEKA’s core algorithms. 

 
The Knowledge Flow presents a data-flow inspired interface to WEKA. The user can select 

WEKA components from a palette, place them on a layout canvas and connect them together in 

order to form a knowledge flow for processing and analyzing data. At present, all of WEKA’s 

classifiers, filters, clusterers, associators, loaders and savers are available in the Knowledge 

Flow along with some extra tools. 

 
 
 

 
The Knowledge Flow can handle data either incrementally or in batches (the Explorer 

handles batch data only). Of course learning from data incremen- tally requires a classifier that can 
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be updated on an instance by instance basis. Currently in WEKA there are ten classifiers that can 

handle data incrementally. 

 
The Knowledge Flow offers the following features: 

 
 Intuitive data flow style layout. 

 Process data in batches or incrementally. 

 Process multiple batches or streams in parallel (each separate flow executes in its own 

thread) . 

 Process multiple streams sequentially via a user-specified order of execution. 

 Chain filters together. 

 View models produced by classifiers for each fold in a cross validation. 

 Visualize performance of incremental classifiers during processing (scrolling plots of 

classification accuracy, RMS error, predictions etc.). 

 Plugin “perspectives” that add major new functionality (e.g. 3D data visualization, time 

series forecasting environment etc.). 

4. Simple CLI 
 

The Simple CLI provides full access to all Weka classes, i.e., classifiers, filters, clusterers, 

etc., but without the hassle of the CLASSPATH (it facilitates the one, with which Weka was 

started). It offers a simple Weka shell with separated command line and output. 
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Commands 

 
The following commands are available in the Simple CLI: 

 
 Java <classname> [<args>] 

 
Invokes a java class with the given arguments (if any). 

 
 Break 

 
Stops the current thread, e.g., a running classifier, in a friendly manner kill stops the current 

thread in an unfriendly fashion. 

 

 Cls 

Clears the output area 

 
 Capabilities <classname> [<args>] 

 
Lists the capabilities of the specified class, e.g., for a classifier with its. 

 
 option: 

 
Capabilities weka.classifiers.meta.Bagging -W weka.classifiers.trees.Id3 

 
 exit 

 
Exits the Simple CLI 

 
 help [<command>] 

 
Provides an overview of the available commands if without a command name as argument, 

otherwise more help on the specified command 
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Invocation 

 
In order to invoke a Weka class, one has only to prefix the class with ”java”. This 

command tells the Simple CLI to load a class and execute it with any given parameters. E.g., the 

J48 classifier can be invoked on the iris dataset with the following command: 

 
java weka.classifiers.trees.J48 -t c:/temp/iris.arff 

This results in the following output: 

Command redirection 

 
Starting with this version of Weka one can perform a basic 

redirection: java weka.classifiers.trees.J48 -t test.arff > j48.txt 

 
Note: the > must be preceded and followed by a space, otherwise it is not recognized as redirection, 

but part of another parameter. 

 

 
Command completion 

 
Commands starting with java support completion for classnames and filenames via Tab 

(Alt+BackSpace deletes parts of the command again). In case that there are several matches, Weka 

lists all possible matches. 

 

 Package Name Completion java weka.cl<Tab> 

 
Results in the following output of possible matches of 

package names: Possible matches: 

weka.classifiers 

weka.clusterers 

 
 Classname completion 



WISE                    III B.Tech I Sem DWDM Lab Manual                 R20 
 

WISE Page 45  

 

 

java weka.classifiers.meta.A<Tab> lists the following classes 

 

 
Possible matches: 

weka.classifiers.meta.AdaBoostM1 

weka.classifiers.meta.AdditiveRegression 

weka.classifiers.meta.AttributeSelectedClassifier 

 

 Filename Completion 

 
In order for Weka to determine whether a the string under the cursor is a classname or a 

filename, filenames need to be absolute (Unix/Linx: /some/path/file;Windows: C:\Some\Path\file) 

or relative and starting with a dot (Unix/Linux:./some/other/path/file; Windows: 

.\Some\Other\Path\file). 

 
B.(iii)Navigate the options available in the WEKA(ex.select attributes panel,preprocess 

panel,classify panel,cluster panel,associate panel and visualize) 

 

 
Ans: Steps for identify options in WEKA 

 
1. Open WEKA Tool. 

2. Click on WEKA Explorer. 

3. Click on Preprocessing tab button. 

4. Click on open file button. 

5. Choose WEKA folder in C drive. 

6. Select and Click on data option button. 

7. Choose iris data set and open file. 

8. All tabs available in WEKA home page. 
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A. (iv) Study the ARFF file format 

 
Ans: ARFF File Format 

 
An ARFF (= Attribute-Relation File Format) file is an ASCII text file that describes a list of 

instances sharing a set of attributes. 

 
ARFF files are not the only format one can load, but all files that can be converted with 

Weka’s “core converters”. The following formats are currently supported: 

 
 ARFF (+ compressed) 

 C4.5 

 CSV 

 libsvm 

 binary serialized instances 

 XRFF (+ compressed) 

 
Overview 

 

 
ARFF files have two distinct sections. The first section is the Header information, which is 

followed the Data information. The Header of the ARFF file contains the name of the relation, a 

list of the attributes (the columns in the data), and their types. 

 
An example header on the standard IRIS dataset looks like this: 

 
1. Title: Iris Plants Database 

 
2. Sources: 

 
(a) Creator: R.A. Fisher 

(b) Donor: Michael Marshall (MARSHALL%PLU@io.arc.nasa.gov) 

(c) Date: July, 1988 
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@RELATION iris 

@ATTRIBUTE sepal length NUMERIC 

@ATTRIBUTE sepal width NUMERIC 

@ATTRIBUTE petal length NUMERIC 

@ATTRIBUTE petal width NUMERIC 

@ATTRIBUTE class {Iris-setosa, Iris-versicolor, Iris-irginica} The Data of the ARFF file looks 

like the following: 

 
@DATA 

 
5.1,3.5,1.4,0.2,Iris-setosa 

4.9,3.0,1.4,0.2,Iris-setosa 

4.7,3.2,1.3,0.2,Iris-setosa 

4.6,3.1,1.5,0.2,Iris-setosa 

5.0,3.6,1.4,0.2,Iris-setosa 

5.4,3.9,1.7,0.4,Iris-setosa 

4.6,3.4,1.4,0.3,Iris-setosa 

5.0,3.4,1.5,0.2,Iris-setosa 

4.4,2.9,1.4,0.2,Iris-setosa 

4.9,3.1,1.5,0.1,Iris-setosa 

 
Lines that begin with a % are comments. 

The @RELATION, @ATTRIBUTE and @DATA declarations are case insensitive. 

 
The ARFF Header Section 

 
The ARFF Header section of the file contains the relation declaration and at• 

tribute declarations. 

 

 
The @relation Declaration 

 

 
The relation name is defined as the first line in the ARFF file. The format is: @relation 

<relation-name> 
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The @attribute Declarations 

 
Attribute declarations take the form of an ordered sequence of @attribute statements. Each 

attribute in the data set has its own @attribute statement which uniquely defines the name 

of that attribute and it’s data type. The order the attributes are declared indicates the 

column position in the data section of the file. For example, if an attribute is the third one 

declared then Weka expects that all that attributes values will be found in the third comma 

delimited column. 

 
The format for the @attribute statement is: 

 
@attribute <attribute-name> <datatype> 

 
where the <attribute-name> must start with an alphabetic character. If spaces are to be 

included in the name then the entire name must be quoted. 

 
The <datatype> can be any of the four types supported by Weka: 

 

 
 numeric 

 integer is treated as numeric 

 real is treated as numeric 

 <nominal-specification> 

 string 

 date [<date-format>] 

 relational for multi-instance data (for future use) 

 
where <nominal-specification> and <date-format> are defined below. The keywords numeric, 

real, integer, string and date are case insensitive. 

 
Numeric attributes 

 
Numeric attributes can be real or integer numbers. 
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Nominal attributes 

 
Nominal values are defined by providing an <nominal-specification> listing the possible 

values: <nominal-name1>, <nominal-name2>, <nominal-name3>, 

For example, the class value of the Iris dataset can be defined as follows: @ATTRIBUTE 

class {Iris-setosa,Iris-versicolor,Iris-virginica} Values that contain spaces must be quoted. 

 
String attributes 

 
String attributes allow us to create attributes containing arbitrary textual values. This is very 

useful in text-mining applications, as we can create datasets with string attributes, then 

write Weka Filters to manipulate strings (like String- ToWordVectorFilter). String 

attributes are declared as follows: 

 
@ATTRIBUTE LCC string 

 
Date attributes 

 
Date attribute declarations take the form: @attribute <name> date [<date-format>] where 

<name> is the name for the attribute and <date-format> is an optional string specifying how 

date values should be parsed and printed (this is the same format used by 

SimpleDateFormat). The default format string accepts the ISO-8601 combined date and 

time format: yyyy-MM-dd’T’HH:mm:ss. Dates must be specified in the data section as the 

corresponding string representations of the date/time (see example below). 

 
Relational attributes 

 
Relational attribute declarations take the form: @attribute <name> relational 

<further attribute definitions> @end <name> 

For the multi-instance dataset MUSK1 the definition would look like this (”...” denotes an 

omission): 

@attribute molecule_name {MUSK-jf78,...,NON-MUSK-199} @attribute bag relational 

@attribute f1 numeric 

... 

@attribute f166 numeric @end bag 
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The ARFF Data Section 

 
The ARFF Data section of the file contains the data declaration line and the actual instance 

lines. 

 
The @data Declaration 

 

 
The @data declaration is a single line denoting the start of the data segment in the file. The 

format is: 

 
@data 

 
The instance data 

 

 
Each instance is represented on a single line, with carriage returns denoting the end of the 

instance. A percent sign (%) introduces a comment, which continues to the end of the line. 

 
Attribute values for each instance are delimited by commas. They must appear in the order 

that they were declared in the header section (i.e. the data corresponding to the nth 

@attribute declaration is always the nth field of the attribute). 

 

 
Missing values are represented by a single question mark, as in: 

 

 
@data 4.4,?,1.5,?,Iris-setosa 

 
Values of string and nominal attributes are case sensitive, and any that contain space or the 

comment-delimiter character % must be quoted. (The code suggests that double-quotes are 

acceptable and that a backslash will escape individual characters.) 

 

 
string 

An example follows: @relation LCCvsLCSH @attribute LCC string @attribute LCSH 
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AG5, ’Encyclopedias and dictionaries.;Twentieth 

century.’ AS262, ’Science -- Soviet Union -- History.’ 

AE5, ’Encyclopedias and dictionaries.’ 

AS281, ’Astronomy, Assyro-Babylonian.;Moon -- Phases.’ 

AS281, ’Astronomy, Assyro-Babylonian.;Moon -- Tables.’ 

 
Dates must be specified in the data section using the string representation specified in the 

attribute declaration. 

 
For example: 

@RELATION Timestamps 

@ATTRIBUTE timestamp DATE "yyyy-MM-dd HH:mm:ss" @DATA 

 
"2001-04-03 12:12:12" 

"2001-05-03 12:59:55" 

 

 
Relational data must be enclosed within double quotes ”. For example an instance of the 

MUSK1 dataset (”...” denotes an omission): 

 
MUSK-188,"42,...,30",1 

 
B.(v) Explore the available data sets in WEKA. 

 
Ans: Steps for identifying data sets in WEKA 

 
1. Open WEKA Tool. 

2. Click on WEKA Explorer. 

3. Click on open file button. 

4. Choose WEKA folder in C drive. 

5. Select and Click on data option button. 
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. 

 
 

Sample Weka Data Sets 

Below are some sample WEKA data sets, in arff format. 
 

 contact-lens.arff 

 cpu.arff 

 cpu.with-vendor.arff 

 diabetes.arff 

 glass.arff 

 ionospehre.arff 

 iris.arff 

 labor.arff 

 ReutersCorn-train.arff 



WISE                    III B.Tech I Sem DWDM Lab Manual                 R20 
 

WISE Page 57  

 

 

 ReutersCorn-test.arff 

 ReutersGrain-train.arff 

 ReutersGrain-test.arff 

 segment-challenge.arff 

 segment-test.arff 

 soybean.arff 

 supermarket.arff 

 vote.arff 

 weather.arff 

 weather.nominal.arff 

 
B. (vi) Load a data set (ex.Weather dataset,Iris dataset,etc.) 

 
Ans: Steps for load the Weather data set. 

 
1. Open WEKA Tool. 

2. Click on WEKA Explorer. 

3. Click on open file button. 

4. Choose WEKA folder in C drive. 

5. Select and Click on data option button. 

6. Choose Weather.arff file and Open the file. 

 
Steps for load the Iris data set. 

 
1. Open WEKA Tool. 

2. Click on WEKA Explorer. 

3. Click on open file button. 

4. Choose WEKA folder in C drive. 

5. Select and Click on data option button. 

6. Choose Iris.arff file and Open the file. 
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B. (vii) Load each dataset and observe the following: 

 
B. (vii.i) List attribute names and they types 

Ans: Example dataset-Weather.arff 

List out the attribute names: 

 
1. outlook 

2. temperature 

3. humidity 

4. windy 

5. play 
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B. (vii.ii) Number of records in each dataset. 

 
Ans: @relation weather.symbolic 

 
@attribute outlook {sunny, overcast, rainy} 

@attribute temperature {hot, mild, cool} 

@attribute humidity {high, normal} 

@attribute windy {TRUE, FALSE} 

@attribute play {yes, no} 

@data 

sunny,hot,high,FALSE,no 

sunny,hot,high,TRUE,no 

overcast,hot,high,FALSE,yes 

rainy,mild,high,FALSE,yes 

rainy,cool,normal,FALSE,yes 

rainy,cool,normal,TRUE,no 

overcast,cool,normal,TRUE,yes 

sunny,mild,high,FALSE,no 

sunny,cool,normal,FALSE,yes 

rainy,mild,normal,FALSE,yes 

sunny,mild,normal,TRUE,yes 

overcast,mild,high,TRUE,yes 

overcast,hot,normal,FALSE,yes 

rainy,mild,high,TRUE,no 

 

 
B. (vii.iii) Identify the class attribute (if any) 

Ans: class attributes 

1. sunny 

2. overcast 

3. rainy 
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B. (vii.iv) Plot Histogram 

 
Ans: Steps for identify the plot histogram 

 

 
1. Open WEKA Tool. 

2. Click on WEKA Explorer. 

3. Click on Visualize button. 

4. Click on right click button. 

5. Select and Click on polyline option button. 
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B. (vii.v) Determine the number of records for each class 

 
Ans: @relation weather.symbolic 

@data 

 
sunny,hot,high,FALSE,no 

sunny,hot,high,TRUE,no 

overcast,hot,high,FALSE,yes 

rainy,mild,high,FALSE,yes 

rainy,cool,normal,FALSE,yes 

rainy,cool,normal,TRUE,no 

overcast,cool,normal,TRUE,yes 

sunny,mild,high,FALSE,no 

sunny,cool,normal,FALSE,yes 

rainy,mild,normal,FALSE,yes 

sunny,mild,normal,TRUE,yes 

overcast,mild,high,TRUE,yes 

overcast,hot,normal,FALSE,yes 

rainy,mild,high,TRUE,no 

 
B. (vii.vi) Visualize the data in various dimensions 

 

Click on Visualize All button in WEKA Explorer. 
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Experiment-3: 

 
3. Perform data preprocessing tasks and Demonstrate performing 

association rule mining on data sets 
 

 

A. Explore various options in Weka for Preprocessing data and apply (like Discretization 

Filters, Resample filter, etc.) n each dataset. 

 

Ans: 

Preprocess Tab 

 

1. Loading Data 

 
The first four buttons at the top of the preprocess section enable you to load data into 

WEKA: 

 
1. Open file.... Brings up a dialog box allowing you to browse for the data file on the local file 

system. 

 
2. Open URL .... Asks for a Uniform Resource Locator address for where the data is stored. 

 
3. Open DB .... Reads data from a database. (Note that to make this work you might have to edit the 

file in weka/experiment/DatabaseUtils.props.) 

 
4. Generate .... Enables you to generate artificial data from a variety of Data Generators. Using the 

Open file ... button you can read files in a variety of formats: WEKA’s ARFF format, CSV 

 
format, C4.5 format, or serialized Instances format. ARFF files typically have a .arff extension, 

CSV files a .csv extension, C4.5 files a .data and .names extension, and serialized Instances objects 

a .bsi extension. 
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Current Relation: Once some data has been loaded, the Preprocess panel shows a variety of 

information. The Current relation box (the “current relation” is the currently loaded data, 

which can be interpreted as a single relational table in database terminology) has three entries: 

 
1. Relation. The name of the relation, as given in the file it was loaded from. Filters (described 

below) modify the name of a relation. 

 
2. Instances. The number of instances (data points/records) in the data. 

 
3. Attributes. The number of attributes (features) in the data. 

 
Working With Attributes 

 
Below the Current relation box is a box titled Attributes. There are four buttons, and 

beneath them is a list of the attributes in the current relation. 
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The list has three columns: 

 
1. No.. A number that identifies the attribute in the order they are specified in the data file. 

 
2. Selection tick boxes. These allow you select which attributes are present in the relation. 

3. Name. The name of the attribute, as it was declared in the data file. When you click on different 

rows in the list of attributes, the fields change in the box to the right titled Selected attribute. 

 
This box displays the characteristics of the currently highlighted attribute in the list: 

 
1. Name. The name of the attribute, the same as that given in the attribute list. 

 
2. Type. The type of attribute, most commonly Nominal or Numeric. 

 
3. Missing. The number (and percentage) of instances in the data for which this attribute is missing 

(unspecified). 

4. Distinct. The number of different values that the data contains for this attribute. 

 
5. Unique. The number (and percentage) of instances in the data having a value for this attribute 

that no other instances have. 

 
Below these statistics is a list showing more information about the values stored in this 

attribute, which differ depending on its type. If the attribute is nominal, the list consists of each 

possible value for the attribute along with the number of instances that have that value. If the 

attribute is numeric, the list gives four statistics describing the distribution of values in the data— 

the minimum, maximum, mean and standard deviation. And below these statistics there is a 

coloured histogram, colour-coded according to the attribute chosen as the Class using the box 

above the histogram. (This box will bring up a drop-down list of available selections when 

clicked.) Note that only nominal Class attributes will result in a colour-coding. Finally, after 

pressing the Visualize All button, histograms for all the attributes in the data are shown in a 

separate window. 

 

 
Returning to the attribute list, to begin with all the tick boxes are unticked. 
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They can be toggled on/off by clicking on them individually. The four buttons above can 

also be used to change the selection: 

 

 

 
PREPROCESSING 

 
1. All. All boxes are ticked. 

2. None. All boxes are cleared (unticked). 

3. Invert. Boxes that are ticked become unticked and vice versa. 

 
4. Pattern. Enables the user to select attributes based on a Perl 5 Regular Expression. E.g., .* id 

selects all attributes which name ends with id. 

 
Once the desired attributes have been selected, they can be removed by clicking the Remove 

button below the list of attributes. Note that this can be undone by clicking the Undo button, which 

is located next to the Edit button in the top-right corner of the Preprocess panel. 

 
Working with Filters:- 

 
The preprocess section allows filters to be defined that transform the data in various 

ways. The Filter box is used to set up the filters that are required. At the left of the Filter 

box is a Choose button. By clicking this button it is possible to select one of the filters in 

WEKA. Once a filter has been selected, its name and options are shown in the field next to 

the Choose button. Clicking on this box with the left mouse button brings up a 

GenericObjectEditor dialog box. A click with the right mouse button (or Alt+Shift+left  

click) brings up a menu where you can choose, either to display the properties in a 

GenericObjectEditor dialog box, or to copy the current setup string to the clipboard. 
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The GenericObjectEditor Dialog Box 

 
The GenericObjectEditor dialog box lets you configure a filter. The same kind 

of dialog box is used to configure other objects, such as classifiers and clusterers 

 
(see below). The fields in the window reflect the available options. 

 
Right-clicking (or Alt+Shift+Left-Click) on such a field will bring up a popup menu, listing the 

following options: 

 
1. Show properties... has the same effect  as left-clicking on the field, i.e., a dialog appears 

allowing you to alter the settings. 

 
2. Copy configuration to clipboard copies the currently displayed configuration string to the 

system’s clipboard and therefore can be used anywhere else in WEKA or in the console. This is 

rather handy if you have to setup complicated, nested schemes. 

 
3. Enter configuration... is the “receiving” end for configurations that got copied to the 

clipboard earlier on. In this dialog you can enter a class name followed by options (if the class 

supports these). This also allows you to transfer a filter setting from the Preprocess panel to a 

Filtered Classifier used in the Classify panel. 
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Left-Clicking on any of these gives an opportunity to alter the filters settings. For example, 

the setting may take a text string, in which case you type the string into the text field provided. Or 

it may give a drop-down box listing several states to choose from. Or it may do something else, 

depending on the information required. Information on the options is provided in a tool tip if you 

let the mouse pointer hover of the corresponding field. More information on the filter and its 

options can be obtained by clicking on the More button in the About panel at the top of the 

GenericObjectEditor window. 

 

 
Applying Filters 

 

 
Once you have selected and configured a filter, you can apply it to the data by pressing the 

Apply button at the right end of the Filter panel in the Preprocess panel. The Preprocess panel will 

then show the transformed data. The change can be undone by pressing the Undo button. You can 

also use the Edit...button to modify your data manually in a dataset editor. Finally, the Save... 

button at the top right of the Preprocess panel saves the current version of the relation in file 

formats that can represent the relation, allowing it to be kept for future use. 

 
 Steps for run preprocessing tab in WEKA 

 
1. Open WEKA Tool. 

2. Click on WEKA Explorer. 

3. Click on Preprocessing tab button. 

4. Click on open file button. 

5. Choose WEKA folder in C drive. 

6. Select and Click on data option button. 

7. Choose labor data set and open file. 

8. Choose filter button and select the Unsupervised-Discritize option and apply 

Dataset labor.arff 
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The following screenshot shows the effect of discretization 
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B. Load each dataset into Weka and run Aprior algorithm with different support and 

confidence values. Study the rules generated. 

 

Ans: 

 
Steps for run Aprior algorithm in WEKA 

 
1. Open WEKA Tool. 

2. Click on WEKA Explorer. 

3. Click on Preprocessing tab button. 

4. Click on open file button. 

5. Choose WEKA folder in C drive. 

6. Select and Click on data option button. 

7. Choose Weather data set and open file. 

8. Click on Associate tab and Choose Aprior algorithm 

9. Click on start button. 

 
Output : === Run information === 

 
Scheme: weka.associations.Apriori -N 10 -T 0 -C 0.9 -D 0.05 -U 1.0 -M 0.1 -S -1.0 -c • 

1 

Relation: weather.symbolic 

Instances: 14 

Attributes: 5 

outlook 

temperature 

humidity 

windy 

play 

=== Associator model (full training set) === 

Apriori 

======= 

 
Minimum support: 0.15 (2 instances) 

Minimum metric <confidence>: 0.9 

Number of cycles performed: 17 
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Generated sets of large itemsets: 

 
Size of set of large itemsets L(1): 12 

 
Size of set of large itemsets L(2): 47 

Size of set of large itemsets L(3): 39 

 
Size of set of large itemsets L(4): 6 

Best rules found: 

1. outlook=overcast 4 ==> play=yes 4 conf:(1) 

2. temperature=cool 4 ==> humidity=normal 4 conf:(1) 

3. humidity=normal windy=FALSE 4 ==> play=yes 4 conf:(1) 

4. outlook=sunny play=no 3 ==> humidity=high 3 conf:(1) 

5. outlook=sunny humidity=high 3 ==> play=no 3 conf:(1) 

6. outlook=rainy play=yes 3 ==> windy=FALSE 3 conf:(1) 

7. outlook=rainy windy=FALSE 3 ==> play=yes 3 conf:(1) 

8. temperature=cool play=yes 3 ==> humidity=normal 3 conf:(1) 

9. outlook=sunny temperature=hot 2 ==> humidity=high 2 conf:(1) 

10. temperature=hot play=no 2 ==> outlook=sunny 2 conf:(1) 
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Association Rule: 

 

An association rule has two parts, an antecedent (if) and a consequent (then). An antecedent is an 

item found in the data. A consequent is an item that is found in combination with the antecedent. 

 
Association rules are created by analyzing data for frequent if/then patterns and using the 

criteriasupport and confidence to identify the most important relationships. Support is an indication 

of how frequently the items appear in the database. Confidence indicates the number of times the 

if/then statements have been found to be true. 

 
In data mining, association rules are useful for analyzing and predicting customer behavior. They 

play an important part in shopping basket data analysis, product clustering, catalog design and store 

layout. 

 
Support and Confidence values: 

 
 Support count: The support count of an itemset X, denoted by X.count, in a data set T is the 

number of transactions in T that contain X. Assume T has n transactions. 

 Then, 

support  
( X  Y ).count 

n 

 
 

confidence  
( X  Y ).count 

X .count 

 
support = support({A U C}) 

 
confidence = support({A U C})/support({A}) 
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C. Apply different discretization filters on numerical attributes and run the Aprior 

association rule algorithm. Study the rules generated. Derive interesting insights and observe 

the effect of discretization in the rule generation process. 

 

 
Ans: Steps for run Aprior algorithm in WEKA 

 
1. Open WEKA Tool. 

2. Click on WEKA Explorer. 

3. Click on Preprocessing tab button. 

4. Click on open file button. 

5. Choose WEKA folder in C drive. 

6. Select and Click on data option button. 

7. Choose Weather data set and open file. 

8. Choose filter button and select the Unsupervised-Discritize option and apply 

9. Click on Associate tab and Choose Aprior algorithm 

10. Click on start button. 
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Output : === Run information === 

 
Scheme: weka.associations.Apriori -N 10 -T 0 -C 0.9 -D 0.05 -U 1.0 -M 0.1 -S -1.0 -c • 

1 

Relation: weather.symbolic 

Instances: 14 

Attributes: 5 

outlook 

temperature 

humidity 

windy 

play 

=== Associator model (full training set) === 

Apriori 

======= 

Minimum support: 0.15 (2 instances) 

Minimum metric <confidence>: 0.9 

Number of cycles performed: 17 

 
Generated sets of large itemsets: 

 
Size of set of large itemsets L(1): 12 

 
Size of set of large itemsets L(2): 47 

Size of set of large itemsets L(3): 39 

 
Size of set of large itemsets L(4): 6 

Best rules found: 

1. outlook=overcast 4 ==> play=yes 4 conf:(1) 

2. temperature=cool 4 ==> humidity=normal 4 conf:(1) 

3. humidity=normal windy=FALSE 4 ==> play=yes 4 conf:(1) 

4. outlook=sunny play=no 3 ==> humidity=high 3 conf:(1) 

5. outlook=sunny humidity=high 3 ==> play=no 3 conf:(1) 

6. outlook=rainy play=yes 3 ==> windy=FALSE 3 conf:(1) 

7. outlook=rainy windy=FALSE 3 ==> play=yes 3 conf:(1) 
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Experiment-4: 

 4. Demonstrate performing classification on data sets. 
 

Classification Tab 

 

Selecting a Classifier 

 
At the top of the classify section is the Classifier box. This box has a text fieldthat gives the 

name of the currently selected classifier, and its options. Clicking on the text box with the left 

mouse button brings up a GenericObjectEditor dialog box, just the same as for filters, that you can 

use to configure the options of the current classifier. With a right click (or Alt+Shift+left click) you 

can once again copy the setup string to the clipboard or display the properties in a 

GenericObjectEditor dialog box. The Choose button allows you to choose one of the classifiers that 

are available in WEKA. 

 
Test Options 

 
The result of applying the chosen classifier will be tested according to the options that are 

set by clicking in the Test options box. There are four test modes: 

 

 
1. Use training set. The classifier is evaluated on how well it predicts the class of the instances it 

was trained on. 

 
2. Supplied test set. The classifier is evaluated on how well it predicts the class of a set of 

instances loaded from a file. Clicking the Set... button brings up a dialog allowing you to choose 

the file to test on. 

 
3. Cross-validation. The classifier is evaluated by cross-validation, using the number of folds that 

are entered in the Folds text field. 

4. Percentage split. The classifier is evaluated on how well it predicts a certain percentage of the 

data which is held out for testing. The amount of data held out depends on the value entered in the 

% field. 

 
Classifier Evaluation Options: 

 

 

1. Output model. The classification model on the full training set is output so that it can be 

viewed, visualized, etc. This option is selected by default. 
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2. Output per-class stats. The precision/recall and true/false statistics for each class are output. 

This option is also selected by default. 

 
3. Output entropy evaluation measures. Entropy evaluation measures are included in the output. 

This option is not selected by default. 

4. Output confusion matrix. The confusion matrix of the classifier’s predictions is included in 

the output. This option is selected by default. 

 
5. Store predictions for visualization. The classifier’s predictions are remembered so that they 

can be visualized. This option is selected by default. 

 
6. Output predictions. The predictions on the evaluation data are output. 

 
Note that in the case of a cross-validation the instance numbers do not correspond to the location in 

the data! 

 
7. Output additional attributes. If additional attributes need to be output alongside the 

 
predictions, e.g., an ID attribute for tracking misclassifications, then the index of this attribute can 

be specified here. The usual Weka ranges are supported,“first” and “last” are therefore valid 

indices as well (example: “first-3,6,8,12-last”). 

 
8. Cost-sensitive evaluation. The errors is evaluated with respect to a cost matrix. The Set... 

button allows you to specify the cost matrix used. 

 
9. Random seed for xval / % Split. This specifies the random seed used when randomizing the 

data before it is divided up for evaluation purposes. 

 
10. Preserve order for % Split. This suppresses the randomization of the data before splitting into 

train and test set. 

 
11. Output source code. If the classifier can output the built model as Java source code, you can 

specify the class name here. The code will be printed in the “Classifier output” area. 

 
The Class Attribute 

The classifiers in WEKA are designed to be trained to predict a single ‘class’ 
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attribute, which is the target for prediction. Some classifiers can only learn nominal classes; others 

can only learn numeric classes (regression problems) still others can learn both. 

By default, the class is taken to be the last attribute in the data. If you want 

 
to train a classifier to predict a different attribute, click on the box below the Test options box to 

bring up a drop-down list of attributes to choose from. 

 
Training a Classifier 

 
Once the classifier, test options and class have all been set, the learning process is started by 

clicking on the Start button. While the classifier is busy being trained, the little bird moves around. 

You can stop the training process at any time by clicking on the Stop button. When training is 

complete, several things happen. The Classifier output area to the right of the display is filled with 

text describing the results of training and testing. A new entry appears in the Result list box. We 

look at the result list below; but first we investigate the text that has been output. 

 

 
A. Load each dataset into Weka and run id3, j48 classification algorithm, study the classifier 

output. Compute entropy values, Kappa ststistic. 

 
Ans: 

 
 Steps for run ID3 and J48 Classification algorithms in WEKA 

 
1. Open WEKA Tool. 

2. Click on WEKA Explorer. 

3. Click on Preprocessing tab button. 

4. Click on open file button. 

5. Choose WEKA folder in C drive. 

6. Select and Click on data option button. 

7. Choose iris data set and open file. 

8. Click on classify tab and Choose J48 algorithm and select use training set test option. 

9. Click on start button. 

10. Click on classify tab and Choose ID3 algorithm and select use training set test option. 

11. Click on start button. 
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Output: 

=== Run information === 

 
Scheme:weka.classifiers.trees.J48 -C 0.25 -M 2 

Relation: iris 

Instances: 150 

Attributes: 5 

sepallength 

sepalwidth 

petallength 

petalwidth 

class 

Test mode:evaluate on training data 

 
=== Classifier model (full training set) === 

 
J48 pruned tree 

 

 
petalwidth <= 0.6: Iris-setosa (50.0) 

petalwidth > 0.6 

| petalwidth <= 1.7 

| | petallength <= 4.9: Iris-versicolor (48.0/1.0) 

| | petallength > 4.9 

| | | petalwidth <= 1.5: Iris-virginica (3.0) 

| | | petalwidth > 1.5: Iris-versicolor (3.0/1.0) 

| petalwidth > 1.7: Iris-virginica (46.0/1.0) 

Number of Leaves : 5 

Size of the tree : 9 

 

 
Time taken to build model: 0 seconds 

 
=== Evaluation on training set === 

=== Summary === 
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Correctly Classified Instances 147 98 % 

Incorrectly Classified Instances 3 2 % 

Kappa statistic 0.97 

K&B Relative Info Score 14376.1925 % 

K&B Information Score    227.8573 bits   1.519 bits/instance 

Class complexity | order 0   237.7444 bits 1.585 bits/instance 

Class complexity | scheme     16.7179 bits  0.1115 bits/instance 

Complexity improvement (Sf)     221.0265 bits    1.4735 bits/instance 

Mean absolute error  0.0233 

Root mean squared error 0.108 

Relative absolute error 5.2482 % 

Root relative squared error  22.9089 % 

Total Number of Instances   150 

 
=== Detailed Accuracy By Class === 

 
TP Rate FP Rate Precision Recall F-Measure ROC Area Class 

1 0 1 1 1 1 Iris-setosa 
 

0.98 0.02 0.961 0.98 0.97 0.99 Iris-versicolor 

0.96 0.01 0.98 0.96 0.97 0.99 Iris-virginica 

Weighted Avg. 0.98 0.01 0.98 0.98 0.98 0.993 

=== Confusion Matrix === 

a b c <-- classified as 

50 0 0 | a = Iris-setosa 

0 49 1 | b = Iris-versicolor 

0 2 48 | c = Iris-virginica 
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The Classifier Output Text 
 

The text in the Classifier output area has scroll bars allowing you to browse 

the results. Clicking with the left mouse button into the text area, while holding Alt 

and Shift, brings up a dialog that enables you to save the displayed output 

 
in a variety of formats (currently, BMP, EPS, JPEG and PNG). Of course, you 

can also resize the Explorer window to get a larger display area. 

 
The output is 

 
Split into several sections: 

 
1. Run information. A list of information giving the learning scheme options, relation name, 

instances, attributes and test mode that were involved in the process. 
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2. Classifier model (full training set). A textual representation of the classification model that was 

produced on the full training data. 

 
3. The results of the chosen test mode are broken down thus. 

 
4. Summary. A list of statistics summarizing how accurately the classifier was able to predict the 

true class of the instances under the chosen test mode. 

 
5. Detailed Accuracy By Class. A more detailed per-class break down of the classifier’s 

prediction accuracy. 

 
6. Confusion Matrix. Shows how many instances have been assigned to each class. Elements show 

the number of test examples whose actual class is the row and whose predicted class is the column. 

 
7. Source code (optional). This section lists the Java source code if one 

chose “Output source code” in the “More options” dialog. 

 
B.Extract if-then rues from decision tree gentrated by classifier, Observe the confusion 

matrix and derive Accuracy, F- measure, TPrate, FPrate , Precision and recall values. Apply 

cross-validation strategy with various fold levels and compare the accuracy results. 

 
Ans: 

 
A decision tree is a structure that includes a root node, branches, and leaf nodes. Each internal 

node denotes a test on an attribute, each branch denotes the outcome of a test, and each leaf node 

holds a class label. The topmost node in the tree is the root node. 
 

The following decision tree is for the concept buy_computer that indicates whether a customer at a 

company is likely to buy a computer or not. Each internal node represents a test on an attribute. 

Each leaf node represents a class. 
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The benefits of having a decision tree are as follows − 

 
 It does not require any domain knowledge. 

 It is easy to comprehend. 

 The learning and classification steps of a decision tree are simple and fast. 

 

 

IF-THEN Rules: 

Rule-based classifier makes use of a set of IF-THEN rules for classification. We can express a rule 

in the following from − 

 

IF condition THEN conclusion 

Let us consider a rule R1, 

 

Points to remember − 

 

 The IF part of the rule is called rule antecedent orprecondition. 

 

 The THEN part of the rule is called rule consequent. 

 

 The antecedent part the condition consist of one or more attribute tests and these tests are 

logically ANDed. 

 

 The consequent part consists of class prediction. 

R1: IF age=youth AND student=yes 

THEN buy_computer=yes 
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R1: (age = youth) ^ (student = yes))(buys computer = yes) 

 

 

Note − We can also write rule R1 as follows: 

 

If the condition holds true for a given tuple, then the antecedent is satisfied. 

RuleExtraction 

Here we will learn how to build a rule-based classifier by extracting IF-THEN rules from a 

decision tree. 

 

Points to remember − 

 

 One rule is created for each path from the root to the leaf node. 

 

 To form a rule antecedent, each splitting criterion is logically ANDed. 

 

 The leaf node holds the class prediction, forming the rule consequent. 

 

RuleInductionUsingSequentialCovering Algorithm 

Sequential Covering Algorithm can be used to extract IF-THEN rules form the training data. We 

do not require to generate a decision tree first. In this algorithm, each rule for a given class covers 

many of the tuples of that class. 

 

Some of the sequential Covering Algorithms are AQ, CN2, and RIPPER. As per the general 

strategy the rules are learned one at a time. For each time rules are learned, a tuple covered by the 

rule is removed and the process continues for the rest of the tuples. This is because the path to 

each leaf in a decision tree corresponds to a rule. 

 

Note − The Decision tree induction can be considered as learning a set of rules simultaneously. 

 

The Following is the sequential learning Algorithm where rules are learned for one class at a time. 

When learning a rule from a class Ci, we want the rule to cover all the tuples from class C only 

and no tuple form any other class. 
 

Algorithm: Sequential Covering 

 
Input: 

D, a data set class-labeled tuples, 

Att_vals, the set of all attributes and their possible values. 
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Rule Pruning 

The rule is pruned is due to the following reason − 

 

 The Assessment of quality is made on the original set of training data. The rule may 

perform well on training data but less well on subsequent data. That's why the rule pruning 

is required. 

 

 The rule is pruned by removing conjunct. The rule R is pruned, if pruned version of R has 

greater quality than what was assessed on an independent set of tuples. 

 

FOIL is one of the simple and effective method for rule pruning. For a given rule R, 

 

FOIL_Prune = pos - neg / pos + neg 

where pos and neg is the number of positive tuples covered by R, respectively. 

 

Note − This value will increase with the accuracy of R on the pruning set. Hence, if the 

FOIL_Prune value is higher for the pruned version of R, then we prune R. 

 
 

 Steps for run decision tree algorithms in WEKA 

 
1. Open WEKA Tool. 

2. Click on WEKA Explorer. 

3. Click on Preprocessing tab button. 

Output: A Set of IF-THEN rules. 

Method: 

Rule_set={ }; // initial set of rules learned is empty 

for each class c do 

repeat 

Rule = Learn_One_Rule(D, Att_valls, c); 

remove tuples covered by Rule form D; 

until termination condition; 

 
Rule_set=Rule_set+Rule; // add a new rule to rule-set 

end for 

return Rule_Set; 
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4. Click on open file button. 

5. Choose WEKA folder in C drive. 

6. Select and Click on data option button. 

7. Choose iris data set and open file. 

8. Click on classify tab and Choose decision table algorithm and select cross-validation 

folds value-10 test option. 

9. Click on start button. 

 
Output: 

=== Run information === 

Scheme:weka.classifiers.rules.DecisionTable -X 1 -S "weka.attributeSelection.BestFirst -D 

1 -N 5" 

Relation: iris 

Instances: 150 

Attributes: 5 

sepallength 

sepalwidth 

petallength 

petalwidth 

class 

Test mode:10-fold cross-validation 

 
=== Classifier model (full training set) === 

Decision Table: 

Number of training instances: 150 

Number of Rules : 3 

Non matches covered by Majority class. 

Best first. 

Start set: no attributes 

Search direction: forward 

Stale search after 5 node expansions 

Total number of subsets evaluated: 12 

Merit of best subset found: 96 

Evaluation (for feature selection): CV (leave one out) 

Feature set: 4,5 



WISE                    III B.Tech I Sem DWDM Lab Manual                 R20 
 

 

 

 

Time taken to build model: 0.02 seconds 

 
=== Stratified cross-validation === 

=== Summary ===   

Correctly Classified Instances 139 92.6667 % 

Incorrectly Classified Instances 11 7.3333 % 

Kappa statistic 0.89  

Mean absolute error 0.092  

Root mean squared error 0.2087  

Relative absolute error 20.6978 % 

Root relative squared error 44.2707 % 
Total Number of Instances 150  

 

=== Detailed Accuracy By Class === 

 

TP Rate FP Rate Precision Recall F-Measure ROC Area Class 

1 0 1 1 1 1 Iris-setosa 

0.88 0.05 0.898 0.88 0.889 0.946 Iris-versicolor 
0.9 0.06 0.882 0.9 0.891 0.947 Iris-virginica 

Weighted Avg. 0.927 0.037 0.927 0.927 0.927 0.964 

=== Confusion Matrix === 

a b c <-- classified as 

50 0 0 | a = Iris-setosa 

0 44 6 | b = Iris-versicolor 

0 5 45 | c = Iris-virginica 
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C. Load each dataset into Weka and perform Naïve-bayes classification and k-Nearest 

Neighbor classification, Interpret the results obtained. 

 
Ans: 

 
 Steps for run Naïve-bayes and k-nearest neighbor Classification algorithms in WEKA 

 
1. Open WEKA Tool. 

2. Click on WEKA Explorer. 

3. Click on Preprocessing tab button. 

4. Click on open file button. 

5. Choose WEKA folder in C drive. 

6. Select and Click on data option button. 

7. Choose iris data set and open file. 

8. Click on classify tab and Choose Naïve-bayes algorithm and select use training set test 

option. 

9. Click on start button. 

10. Click on classify tab and Choose k-nearest neighbor and select use training set test 

option. 

11. Click on start button. 
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Output: Naïve Bayes 

 

 
=== Run information === 

 
Scheme:weka.classifiers.bayes.NaiveBayes 

Relation: iris 

Instances: 150 

Attributes: 5 

sepallength 

sepalwidth 

petallength 

petalwidth 

class 

Test mode:evaluate on training data 

 

 
=== Classifier model (full training set) === 

Naive Bayes Classifier 

Class 

Attribute  Iris-setosa Iris-versicolor Iris-virginica 

(0.33) (0.33) (0.33) 

=============================================================== 

sepallength 
 

Mean 4.9913 5.9379 6.5795 

std. dev. 0.355 0.5042 0.6353 

weight sum 50 50 50 

Precision 0.1059 0.1059 0.1059 

sepalwidth 

mean 

 

3.4015 

 

2.7687 

 

2.9629 

std. dev. 0.3925 0.3038 0.3088 

weight sum 50 50 50 

Precision 0.1091 0.1091 0.1091 

petallength 
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Mean 1.4694 4.2452 5.5516 

std. dev. 0.1782 0.4712 0.5529 

weight sum 50 50 50 

Precision 0.1405 0.1405 0.1405 

petalwidth 

mean 

 

0.2743 

 

1.3097 

 

2.0343 

std. dev. 0.1096 0.1915 0.2646 

weight sum 50 50 50 

Precision 0.1143 0.1143 0.1143 
 

 

 
 

Time taken to build model: 0 seconds 

 
=== Evaluation on training set === 

 

 
=== Summary === 

Correctly Classified Instances 144 96 % 

Incorrectly Classified Instances 6 4 % 

Kappa statistic 0.94   

Mean absolute error 0.0324   

Root mean squared error 0.1495   

Relative absolute error 7.2883 %   

Root relative squared error 31.7089 %   

Total Number of Instances 150   

 
=== Detailed Accuracy By Class === 

 
TP Rate FP Rate Precision Recall F-Measure ROC Area Class 

1 0 1 1 1 1 Iris-setosa  

0.96 0.04  0.923 0.96 0.941 0.993 Iris-versicolor 

0.92 0.02  0.958 0.92 0.939 0.993 Iris-virginica 

Weighted Avg. 0.96 0.02 0.96 0.96 0.96 0.995 

 
=== Confusion Matrix === 
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a b c <-- classified as 

50 0 0 | a = Iris-setosa 

0 48 2 | b = Iris-versicolor 

0 4 46 | c = Iris-virginica. 
 

 

 

 

 

 
Output: KNN (IBK) 

 

 
=== Run information === 

 
Scheme:weka.classifiers.lazy.IBk -K 1 -W 0 -A "weka.core.neighboursearch.LinearNNSearch -A 

\"weka.core.EuclideanDistance -R first-last\"" 

Relation: iris 

Instances: 150 

Attributes: 5 

sepallength 

sepalwidth 

petallength 
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petalwidth 

class 

Test mode:evaluate on training data 

 
=== Classifier model (full training set) === 

 
IB1 instance-based classifier 

using 1 nearest neighbour(s) for classification 

 

 
Time taken to build model: 0 seconds 

 
 

=== Evaluation on training set === 

=== Summary === 

Correctly Classified Instances 150 100 % 

Incorrectly Classified Instances 0 0 % 

Kappa statistic 

Mean absolute error 

1  

0.0085  

Root mean squared error 0.0091  

Relative absolute error 1.9219 %  

Root relative squared error 1.9335 % 

Total Number of Instances 150  

 
=== Detailed Accuracy By Class === 

 
TP Rate FP Rate Precision Recall F-Measure ROC Area Class 

Weighted Avg. 1 0 1 1 1 1 

=== Confusion Matrix === 

a b c <-- classified as 

50 0 0 | a = Iris-setosa 

0 50 0 | b = Iris-versicolor 

0 0 50 | c = Iris-virginica 

1 0 1 1 1 1 Iris-setosa 

1 0 1 1 1 1 Iris-versicolor 

1 0 1 1 1 1 Iris-virginica 
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D. Plot RoC Curves. 

 

 
Ans: Steps for identify the plot RoC Curves. 

 

 
1. Open WEKA Tool. 

2. Click on WEKA Explorer. 

3. Click on Visualize button. 

4. Click on right click button. 

5. Select and Click on polyline option button. 
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E. Compare classification results of ID3,J48, Naïve-Bayes and k-NN classifiers for each 

dataset , and reduce which classifier is performing best and poor for each dataset and justify. 

 
Ans: 

 

 
 Steps for run ID3 and J48 Classification algorithms in WEKA 

 
1. Open WEKA Tool. 

2. Click on WEKA Explorer. 

3. Click on Preprocessing tab button. 

4. Click on open file button. 

5. Choose WEKA folder in C drive. 

6. Select and Click on data option button. 

7. Choose iris data set and open file. 

8. Click on classify tab and Choose J48 algorithm and select use training set test option. 

Page 89 
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J48: 

9. Click on start button. 

10. Click on classify tab and Choose ID3 algorithm and select use training set test option. 

11. Click on start button. 

12. Click on classify tab and Choose Naïve-bayes algorithm and select use training set test 

option. 

13. Click on start button. 

14. Click on classify tab and Choose k-nearest neighbor and select use training set test 

option. 

15. Click on start button. 

 

=== Run information === 

 
Scheme:weka.classifiers.trees.J48 -C 0.25 -M 2 

Relation: iris 

Instances: 150 

Attributes: 5 

sepallength 

sepalwidth 

petallength 

petalwidth 

class 

Test mode:evaluate on training data 

 
=== Classifier model (full training set) === 

J48 pruned tree 
 

petalwidth <= 0.6: Iris-setosa (50.0) 

petalwidth > 0.6 

| petalwidth <= 1.7 

| | petallength <= 4.9: Iris-versicolor (48.0/1.0) 

| | petallength > 4.9 

| | | petalwidth <= 1.5: Iris-virginica (3.0) 

| | | petalwidth > 1.5: Iris-versicolor (3.0/1.0) 

| petalwidth > 1.7: Iris-virginica (46.0/1.0) 

Number of Leaves : 5 
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Size of the tree : 9 

 
Time taken to build model: 0 seconds 

 
 

=== Evaluation on training set === 

=== Summary === 

Correctly Classified Instances 147 98 % 

Incorrectly Classified Instances 3 2 % 

Kappa statistic 0.97  

Mean absolute error 0.0233  

Root mean squared error 0.108  

Relative absolute error 5.2482 %  

Root relative squared error 22.9089 % 

Total Number of Instances 150  

 
=== Detailed Accuracy By Class === 

 
TP Rate FP Rate Precision Recall F-Measure ROC Area Class 

1 0 1 1 1 1 Iris-setosa  

0.98 0.02  0.961 0.98 0.97 0.99 Iris-versicolor 

0.96 0.01  0.98 0.96 0.97 0.99 Iris-virginica 

Weighted Avg. 0.98 0.01 0.98 0.98 0.98 0.993 

=== Confusion Matrix === 

a b c <-- classified as 

50 0 0 | a = Iris-setosa 

0 49 1 | b = Iris-versicolor 

0 2 48 | c = Iris-virginica 

Naïve-bayes: 

=== Run information === 

 
Scheme:weka.classifiers.bayes.NaiveBayes 

Relation: iris 

Instances: 150 

Attributes: 5 

sepallength 
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sepalwidth 

petallength 

petalwidth 

class 

Test mode:evaluate on training data 

=== Classifier model (full training set) === 

Naive Bayes Classifier 

Class 

Attribute  Iris-setosa Iris-versicolor Iris-virginica 

(0.33) (0.33) (0.33) 

=============================================================== 

sepallength 
 

Mean 4.9913 5.9379 6.5795 

std. dev. 0.355 0.5042 0.6353 

weight sum 50 50 50 

Precision 0.1059 0.1059 0.1059 

sepalwidth 

mean 

 

3.4015 

 

2.7687 

 

2.9629 

std. dev. 0.3925 0.3038 0.3088 

weight sum 50 50 50 

Precision 0.1091 0.1091 0.1091 

petallength 

mean 

 

1.4694 

 

4.2452 

 

5.5516 

std. dev. 0.1782 0.4712 0.5529 

weight sum 50 50 50 

Precision 0.1405 0.1405 0.1405 

petalwidth 

mean 

 

0.2743 

 

1.3097 

 

2.0343 

std. dev. 0.1096 0.1915 0.2646 

weight sum 50 50 50 

Precision 0.1143 0.1143 0.1143 

 
Time taken to build model: 0 seconds 

 
=== Evaluation on training set === 
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=== Summary ===   

Correctly Classified Instances 144 96 % 

Incorrectly Classified Instances 6 4 % 

Kappa statistic 0.94  

Mean absolute error 0.0324  

Root mean squared error 0.1495  

Relative absolute error 7.2883 %  

Root relative squared error 31.7089 % 

Total Number of Instances 150  

 

=== Detailed Accuracy By Class === 

TP Rate FP Rate Precision Recall F-Measure ROC Area Class 

1 0 1 1 1 1 Iris-setosa 
 

0.96 0.04 0.923 0.96 0.941 0.993 Iris-versicolor 

0.92 0.02 0.958 0.92 0.939 0.993 Iris-virginica 

Weighted Avg. 0.96 0.02 0.96 0.96 0.96 0.995 

 
=== Confusion Matrix === 

a b c <-- classified as 

50 0 0 | a = Iris-setosa 

0 48 2 | b = Iris-versicolor 

0 4 46 | c = Iris-virginica 

K-Nearest Neighbor (IBK): 

=== Run information === 

Scheme:weka.classifiers.lazy.IBk -K 1 -W 0 -A "weka.core.neighboursearch.LinearNNSearch -A 

\"weka.core.EuclideanDistance -R first-last\"" 

Relation: iris 

Instances: 150 

Attributes: 5 

sepallength 

sepalwidth 

petallength 

petalwidth 

class 

Test mode:evaluate on training data 

 
=== Classifier model (full training set) === 
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IB1 instance-based classifier 

using 1 nearest neighbour(s) for classification 

 
Time taken to build model: 0 seconds 

=== Evaluation on training set === 

=== Summary === 
 
 

Correctly Classified Instances 150 100 % 

Incorrectly Classified Instances 0 0 % 

Kappa statistic 1   

Mean absolute error 0.0085  

Root mean squared error 0.0091  

Relative absolute error 1.9219 %  

Root relative squared error 1.9335 % 

Total Number of Instances 150  

 
=== Detailed Accuracy By Class === 

 
TP Rate FP Rate Precision Recall F-Measure ROC Area Class 

Weighted Avg. 1 0 1 1 1 1 

=== Confusion Matrix === 

a b c <-- classified as 

50 0  0 | a = Iris-setosa 

0 50 0 | b = Iris-versicolor 

0 0 50 | c = Iris-virginica 

1 0 1 1 1 1 Iris-setosa 

1 0 1 1 1 1 Iris-versicolor 

1 0 1 1 1 1 Iris-virginica 
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Experiment:5 

 
5. Demonstrate performing clustering on data sets Clustering Tab 

 

Selecting a Clusterer 

 
By now you will be familiar with the process of selecting and configuring objects. Clicking 

on the clustering scheme listed in the Clusterer box at the top of the 

 
window brings up a GenericObjectEditor dialog with which to choose a new 

clustering scheme. 

 
Cluster Modes 

 
The Cluster mode box is used to choose what to cluster and how to evaluate 

 
the results. The first three options are the same as for classification: Use training set, Supplied test 

set and Percentage split (Section 5.3.1)—except that now the data is assigned to clusters instead of 

trying to predict a specific class. The fourth mode, Classes to clusters evaluation, compares how 

well the chosen clusters match up with a pre-assigned class in the data. The drop-down box below 

this option selects the class, just as in the Classify panel. 

 
An additional option in the Cluster mode box, the Store clusters for visualization tick box, 

determines whether or not it will be possible to visualize the clusters once training is complete. 

When dealing with datasets that are so large that memory becomes a problem it may be helpful to 

disable this option. 

 
Ignoring Attributes 

 
Often, some attributes in the data should be ignored when clustering. The Ignore attributes 

button brings up a small window that allows you to select which attributes are ignored. Clicking on 

an attribute in the window highlights it, holding down the SHIFT key selects a range 

 

 
of consecutive attributes, and holding down CTRL toggles individual attributes on and off. To 

cancel the selection, back out with the Cancel button. To activate it, click the Select button. The 

next time clustering is invoked, the selected attributes are ignored. 

 
Working with Filters 
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The Filtered Clusterer meta-clusterer offers the user the possibility to apply filters directly 

before the clusterer is learned. This approach eliminates the manual application of a filter in the 

Preprocess panel, since the data gets processed on the fly. Useful if one needs to try out different 

filter setups. 

 
Learning Clusters 

 
The Cluster section, like the Classify section, has Start/Stop buttons, a result text area and a 

result list. These all behave just like their classification counterparts. Right-clicking an entry in the 

result list brings up a similar menu, except that it shows only two visualization options: Visualize 

cluster assignments and Visualize tree. The latter is grayed out when it is not applicable. 

 
A.Load each dataset into Weka and run simple k-means clustering algorithm with different 

values of k(number of desired clusters). Study the clusters formed. Observe the sum of 

squared errors and centroids, and derive insights. 

 

 
Ans: 

 
 Steps for run K-mean Clustering algorithms in WEKA 

 
1. Open WEKA Tool. 

2. Click on WEKA Explorer. 

3. Click on Preprocessing tab button. 

4. Click on open file button. 

5. Choose WEKA folder in C drive. 

6. Select and Click on data option button. 

7. Choose iris data set and open file. 

8. Click on cluster tab and Choose k-mean and select use training set test option. 

9. Click on start button. 

 
Output: 

 
=== Run information === 

 
Scheme:weka.clusterers.SimpleKMeans -N 2 -A "weka.core.EuclideanDistance -R first-last" -I 500 

-S 10 

Relation: iris 
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Instances: 150 

Attributes: 5 

sepallength 

sepalwidth 

petallength 

petalwidth 

class 

Test mode:evaluate on training data 

=== Model and evaluation on training set === 

kMeans 

====== 

Number of iterations: 7 

Within cluster sum of squared errors: 62.1436882815797 

Missing values globally replaced with mean/mode 

 
Cluster centroids: 

Cluster# 

Attribute Full Data 0 1 

(150) (100) (50) 

================================================================== 
 

sepallength 5.8433 6.262 5.006 

sepalwidth 3.054 2.872 3.418 

petallength 3.7587 4.906 1.464 

petalwidth 1.1987 1.676 0.244 

class Iris-setosa Iris-versicolor Iris-setosa 

Time taken to build model (full training data) : 0 seconds 

=== Model and evaluation on training set === 

Clustered Instances 

0 100 ( 67%) 

1 50 ( 33%) 
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B.Explore other clustering techniques available in Weka. 

 

 
Ans: Clustering Algorithms And Techniques in WEKA, They are 
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C.Explore visualization features of weka to visualize the clusters. Derive interesting insights 

and explain. 

 
Ans: Visualize Features 

WEKA’s visualization allows you to visualize a 2-D plot of the current working relation. 

Visualization is very useful in practice, it helps to determine difficulty of the learning problem. 

WEKA can visualize single attributes (1-d) and pairs of attributes (2-d), rotate 3-d visualizations 

(Xgobi-style). WEKA has “Jitter” option to deal with nominal attributes and to detect “hidden” 

data points. 

Access To Visualization From The Classifier, Cluster And Attribute Selection Panel Is Available 

From A Popup Menu. Click The Right Mouse Button Over An Entry In The Result List To Bring 

Up The Menu. You Will Be Presented With Options For Viewing Or Saving The Text Output And 

--- Depending On The Scheme --- Further Options For Visualizing Errors, Clusters, Trees Etc. 

 
 

To open Visualization screen, click ‘Visualize’ tab. 
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Select a square that corresponds to the attributes you would like to visualize. For example, let’s 

choose ‘outlook’ for X – axis and ‘play’ for Y – axis. Click anywhere inside the square that 

corresponds to ‘play o 

Changing the View: 

In the visualization window, beneath the X-axis selector there is a drop-down list, 
 

‘Colour’, for choosing the color scheme. This allows you to choose the color of points based on 

the attribute selected. Below the plot area, there is a legend that describes what values the colors 

correspond to. In your example, red represents ‘no’, while blue represents ‘yes’. For better 

visibility you should change the color of label ‘yes’. Left-click on ‘yes’ in the ‘Class colour’ box 

and select lighter color from the color palette. 

n the left and ‘outlook’ at the top. 
 

 

 

 

 
 

 

 

 

 

 
 

page100
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Experiment-6: 

6.Write a java program to prepare a simulated data set with unique instances 

 

 

Creating new dataset java 
 

Dataset dt = new DefaultDataset (); // creation syntax for the dataset 
for 
{ 

(b=0, b<8, b++) // condition setting 

Instnc inst_1 = Instnc.randomInstnc(12); // defining the instance for the dataset 
Dt.add(inst_1); 
} 

//adding the instance for the dataset 

 

This program is used for creating and iterating the entire dataset representing the car name and car 

characteristic when getting a sql query to be performed over it. 
 

public 
public 

class Cars_dtset { 
; 

public String car_description; 
public int car_no; 
} 
interface Actual_Query extends Bs_Query { 
@Select("select car_name, car_description, car_no from Cars_dtset") 
DataSet<Cars_dtset> getAllCars_dtset(); 
} 
Actual_Query mq_0 = con.createQueryObject(Actual_Query.class); 
DataSet rows = mq_0.getAllCars_dtset(); 
for (Cars_dtset mq_0: rows) { 
System.out.println("CarName = " + mq_0.car_name); 
System.out.println("CarDescription = " + mq_0.car_description); 
}

String car_name 
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7.Write a python program to generate frequent item sets/association rules using apriori 

      Experiment-7: 

 

 

 

 

algorithm. 
 

 

Step 1: Data preprocessing 

 
 Installing the required package

 

!pip install apyori 

 Importing the libraries

 

 

 Importing the dataset
 

Data = pd.read_csv('/content/drive/MyDrive/Market_Basket_Optimisation.csv', header = 

None) 

 
 Transforming our pandas dataset into a list dataset

 

Step 2: Training apriori model 

 

Step 3: Visualising the results 

from apyori import apriori 

rule = apriori(transactions = transacts, min_support = 0.003, min_confidence = 0.2, 

min_lift = 3, min_length = 2, max_length = 2) 

import numpy as np 

import matplotlib.pyplot as plt 

import pandas as pd 

# Intializing the list 

transacts = [] 

# populating a list of transactions 

for i in range(0, 7501): 

transacts.append([str(Data.values[i,j]) for j in range(0, 20)]) 
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output = list(rule) # returns a non-tabular output 

# putting output into a pandas dataframe 

def inspect(output): 

lhs 

rhs 

= [tuple(result[2][0][0])[0] for result in output] 

= [tuple(result[2][0][1])[0] for result in output] 

support = [result[1] for result in output] 

confidence = [result[2][0][2] for result in output] 

lift = [result[2][0][3] for result in output] 

return list(zip(lhs, rhs, support, confidence, lift)) 

output_DataFrame = pd.DataFrame(inspect(results), columns = ['Left_Hand_Side', 

'Right_Hand_Side', 'Support', 'Confidence', 'Lift']) 

output_DataFrame 
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Output: 
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Experiment-8: 

8. Write a program to calculate chi-square value using python. Report your observation. 

 
We need to compare the obtained p-value with alpha value of 0.05. 

 
 

from scipy.stats import chi2_contingency 

 

 

 

# defining the table 

 
data = [[207, 282, 241], [234, 242, 232]] 

 
stat, p, dof, expected = chi2_contingency(data) 

 

 

 

# interpret p-value 

alpha = 0.05 

print("p value is " + str(p)) 

if p <= alpha: 

print('Dependent (reject H0)') 

else: 

print('Independent (H0 holds true)') 

 

 

 

Output : 

 
p value is 0.1031971404730939 

Independent (H0 holds true) 
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Experiment-9: 

9. Write a program of Naïve Bayesian classification using python programming language 

Code:  

# Importing the libraries 

import numpy as np 

import matplotlib.pyplot as plt 

import pandas as pd 

 
# Importing the dataset 

dataset = pd.read_csv('Social_Network_Ads.csv') 

X = dataset.iloc[:, [2, 3]].values 

y = dataset.iloc[:, -1].values 

 
# Splitting the dataset into the Training set and Test set 

from sklearn.model_selection import train_test_split 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.20, random_state = 0) 

 

# Feature Scaling 

from sklearn.preprocessing import StandardScaler 

sc = StandardScaler() 

X_train = sc.fit_transform(X_train) 

X_test = sc.transform(X_test) 

 
# Training the Naive Bayes model on the Training set 

from sklearn.naive_bayes import GaussianNB 

classifier = GaussianNB() 

classifier.fit(X_train, y_train) 
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# Predicting the Test set results 

y_pred = classifier.predict(X_test) 

 
# Making the Confusion Matrix 

from sklearn.metrics import confusion_matrix, accuracy_score 

ac = accuracy_score(y_test,y_pred) 

cm = confusion_matrix(y_test, y_pred) 
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Experiment-10: 
 

10. Implement a java program to perform Apriori algorithm. 
 

Code: 

 

import pandas as pd 

import numpy as np 

import matplotlib.pyplot as plt 

import seaborn as sns 

import re 

from mlxtend.frequent_patterns import apriori 

from mlxtend.frequent_patterns import association_rules 

from mlxtend.preprocessing import TransactionEncoder 

from mpl_toolkits.mplot3d import Axes3D 

import networkx as nx 

 

basket = pd.read_csv("Groceries_dataset.csv") 

display(basket.head()) 

 

 

 

out put: 

 

:  
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Experiment-11: 

11. Write a program of cluster analysis using simple k-means algorithm Python 

Programming language. 

Code: 

import numpy as np 

import pandas as pd 

from matplotlib import pyplot as plt 

from sklearn.datasets.samples_generator import make_blobs 

from sklearn.cluster import KMeans 

X, y = make_blobs(n_samples=300, centers=4, cluster_std=0.60, 

random_state=0)plt.scatter(X[:,0], X[:,1]) 

wcss = []for i in range(1, 11): 

kmeans = KMeans(n_clusters=i, init='k-means++', max_iter=300, n_init=10, random_state=0) 

kmeans.fit(X) 

wcss.append(kmeans.inertia_) 

plt.plot(range(1, 11), wcss) 

plt.title('Elbow Method') 

plt.xlabel('Number of clusters') 

plt.ylabel('WCSS') 

plt.show() 

kmeans = KMeans(n_clusters=4, init='k-means++', max_iter=300, n_init=10, random_state=0) 

pred_y = kmeans.fit_predict(X)plt.scatter(X[:,0], X[:,1]) 

plt.scatter(kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:, 1], s=300, c='red')  

plt.show() 
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OUTPUT: 
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Experiment-12: 

12. Write a program to compute/display dissimilarity matrix using python. 

 
a) Demonstrate the following Similarity and Dissimilarity Measures using python FOR 

Cosine Similarity. 

we calculate the Cosine Similarity between the two non-zero vectors. A vector is a single 

dimesingle-dimensional signal NumPy array. Cosine similarity is a measure of similarity, 

often used to measure document similarity in text analysis. We use the below formula to 

compute the cosine similarity. 

Similarity = (A.B) / (||A||.||B||) 

where A and B are vectors: 

 A.B is dot product of A and B: It is computed as sum of element-wise product of A and 

B.

 ||A|| is L2 norm of A: It is computed as square root of the sum of squares of elements of 

the vector A.

Example 1: 

# import required libraries 

import numpy as np 

from numpy.linalg import norm 
 

# define two lists or array 

A = np.array([2,1,2,3,2,9]) 

B = np.array([3,4,2,4,5,5]) 

 

print("A:", A) 

print("B:", B) 

 

# compute cosine similarity 

cosine = np.dot(A,B)/(norm(A)*norm(B)) 

print("Cosine Similarity:", cosine) 
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Output: 
 

 

 

 

b) Demonstrate the following Similarity and Dissimilarity Measures using python FOR 

Jaccard Similarity 

The Jaccard similarity (also known as Jaccard similarity coefficient, or Jaccard index) is a 

statistic used to measure similarities between two sets. 

Its use is further extended to measure similarities between two objects, for example two 

text files. In Python programming, Jaccard similarity is mainly used to measure 

similarities between two sets or between two asymmetric binary vectors. 
 

 
 

 

Mathematically, the calculation of Jaccard similarity is simply taking the ratio of set 

intersection over set union. 

Consider two sets A and B: 

 

Then their Jaccard similarity (or Jaccard index) is given by: 

 
J=|A∩B||A𝖴B|=|A∩B||A|+|B|–|A𝖴B| 

 

 

Let’s break down this formula into two components: 

 
1. Nominator 

The nominator is effectively the set intersection between A and B, shown by the yellow 

area in the infographic below: 

 

2. Denominator 

The denominator is effectively the set union of A and B, shown by the yellow area in the 

infographic below: 
 

https://pyshark.com/everything-about-python-set-data-structure/
https://amzn.to/3vnkzN2
https://pyshark.com/python-set-operations/#python-set-intersection
https://pyshark.com/python-set-operations/#python-set-union
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Using the formula of Jaccard similarity, we can see that the similarity statistic is simply 

the ratio of the above two visualizations, where: 

 
 If both sets are identical, for example A=1,2,3 and B=1,2,3, then their Jaccard 

similarity = 1.

 If sets A and B don’t have common elements, for example, say A=1,2,3 and B=4,5,6, 

then their Jaccard similarity = 0.

 If sets sets A and B have some common elements, for example, A=1,2,3 and B=3,4,5, 

then their Jaccard similarity is some value on the interval: 0≤J(A,B)≤1.

 

 

Calculate Jaccard similarity 

Consider two sets: 

 
 A = {1, 2, 3, 5, 7}

 B = {1, 2, 4, 8, 9}

Or visually: 
 

 

 
 

 

Step 1: 

As the first step, we will need to find the set intersection between A and B: 
 

In this case: 
 

A∩B={1,2} 
 

 

Step 2: 

The second step is to find the set union of A and B: 
 

In this case: 
 

A𝖴B={1,2,3,5,7,4,8,9} 
 

 

Step 3: 

https://pyshark.com/python-set-operations/#python-set-intersection
https://pyshark.com/python-set-operations/#python-set-union


114 

WISE                    III B.Tech I Sem DWDM Lab Manual                 R20 
 

 

And the final step is to take the ratio of sizes of intersection and union: 

J=|A∩B||A𝖴B|=28=0.25 

 

 

What is Jaccard distance 

Unlike the Jaccard similarity (Jaccard index), the Jaccard distance is a measure of 

dissimilarity between two sets. 

Mathematically, the calculation of Jaccard distance is the ratio of difference between set 

union and set intersection over set union. 

Consider two sets A and B: 

 

Then their Jaccard distance is given by: 

 
dJ=|A𝖴B|–|A∩B||A𝖴B|=1–J(A,B) 

Let’s break down this formula into two components: 
 

 

1. Nominator 

The nominator can be also written as: 

 
|A𝖴B|–|A∩B|=(A∖B)𝖴(B∖A)=A𝗈B 

which is effectively the set symmetric difference between A and B, shown by the yellow 

area in the infographic below: 

 

2. Denominator 

The denominator is effectively the set union of A and B, shown by the yellow area in the 

infographic below: 

 

Using the formula of Jaccard distance, we can see that the dissimilarity statistic is simply 

the ratio of the above two visualizations, where: 

 If both sets are identical, for example A=1,2,3 and B=1,2,3, then their Jaccard distance

= 0. 

 If sets A and B don’t have common elements, for example, say A=1,2,3 and B=4,5,6, 

then their Jaccard distance = 1.

 If sets sets A and B have some common elements, for example, A=1,2,3 and B=3,4,5, 

then their Jaccard distance is some value on the interval: 0≤dJ(A,B)≤1.

 

https://pyshark.com/everything-about-python-set-data-structure/
https://amzn.to/3vnkzN2
https://pyshark.com/python-set-operations/#python-set-intersection
https://pyshark.com/python-set-operations/#python-set-union
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Calculate Jaccard distance 

Consider two sets: 

 
 A = {1, 2, 3, 5, 7}

 B = {1, 2, 4, 8, 9}

Or visually: 
 

 

 
 

 

Step 1: 

As the first step, we will need to find the set symmetric difference between A and B: 
 

In this case: 
 

|A𝖴B|–|A∩B|=(A∖B)𝖴(B∖A)=A𝗈B={3,7,5,4,8,9} 
 

 

Step 2: 

The second step is to find the set union of A and B: 
 

In this case: 
 

A𝖴B={1,2,3,5,7,4,8,9} 
 

 

Step 3: 

And the final step is to take the ratio of sizes of symmetric difference and union: 

 
dJ=|A𝖴B|–|A∩B||A𝖴B|=68=0.75 

 

 

Similarity and distance of asymmetric binary attributes 

In this section we will look into a more specific application of Jaccard similarity and 

Jaccard distance. More specifically, their application to asymmetric binary attributes. 

 
From the naming of it, we can already guess what a binary attribute is. It’s an attribute 

that has only two states, and those two states are: 

https://pyshark.com/python-set-operations/#python-set-intersection
https://pyshark.com/python-set-operations/#python-set-union
https://www.sciencedirect.com/topics/computer-science/binary-attribute
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 0, meaning an attribute is not present

 1, meaning an attribute is present

The asymmetry comes from the point that if both attributes are present (both equal to 1), it 

is considered more important, than if both attributes weren’t present (both equal to 0). 

 
Suppose we have two vectors, A and B, each with n binary attributes. 

In this case, the Jaccard similarity (index) can be calculated as: 

 
J=M11M01+M10+M11 

and Jaccard distance can be calculated as: 
 

dJ=M01+M10M01+M10+M11=1−J 

where: 
 

 M11 is the total numbers of attributes, for which both A and B have 1

 M01 is the total numbers of attributes, for which A has 0 and B has 1

 M10 is the total numbers of attributes, for which A has 1 and B has 0

 M00 is the total numbers of attributes, for which both A and B have 0 

and:

 
M11+M01+M10+M00=n 

 

 

Example 

To explain this in more simple terms, consider the example that can be used for market 

basket analysis. 

You operate a store that has 6 products (attributes) and 2 customers (objects), and also 

keep track of which customer bought which item. You know that: 

 
 Customer A bought: apple, milk coffee

 Customer B bought: eggs, milk, coffee

As you can already imagine, we can construct the following matrix: 
 
 

 Apple Tomato Eggs Milk Coffee Sugar 

A 1 0 0 1 1 1 

B 0 0 1 1 1 0 

https://pyshark.com/market-basket-analysis-using-association-rule-mining-in-python/
https://pyshark.com/market-basket-analysis-using-association-rule-mining-in-python/
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Where the binary attribute for each customer is indicating if customer purchased (1) or 

didn’t purchase (0) a particular product. 

 
The question is to find the Jaccard similarity and Jaccard distance for these two 

customers. 

 
Step 1: 

We will first need to find the total number for attributes for each M: 

 Count Explanation 

M11 2 Both customers bought coffee and milk 

M01 1 Customer A didn’t buy eggs, whereas Customer B bought eggs 

 
M10 

 
2 

Customer B didn’t buy apple and sugar, whereas Customer 1 bought apple 

and sugar 

M00 1 Neither of customers bought tomato 

We can validate the groups by summing up the counts. it should be equal to 6 which is 

the n number of attributes (products): 

M11+M01+M10+M00=2+1+2+1=6 
 

 

Step 2: 

Since we have all the required inputs, we can now calculate the Jaccard similarity: 
 

J=M11M01+M10+M11=21+2+2=25=0.4 

And Jaccard distance: 
 

dJ=M01+M10M01+M10+M11=1+21+2+2=35=0.6 

 

 

Calculate Jaccard similarity in Python 

In this section we will use the same sets as we defined in the one of the first sections: 

 A = {1, 2, 3, 5, 7}

 B = {1, 2, 4, 8, 9}

We begin by defining them in Python: 

https://pyshark.com/jaccard-similarity-and-jaccard-distance-in-python/#calculate-jaccard-similarity
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Python 
Copy 

As the next step we will construct a function that takes set A and set B as parameters and 

then calculates the Jaccard similarity using set operations and returns it: 

 

Python 

Copy 

Then test our function: 
 
 

Python 

Copy 

And you should get: 

 

which is exactly the same as the statistic we calculated manually. 
 

 
 

 

Calculate Jaccard distance in Python 

In this section we continue working with the same sets (A and B) as in the previous 

section: 

def jaccard_similarity(A, B): 

#Find intersection of two sets 

nominator = A.intersection(B) 
 

#Find union of two sets 

denominator = A.union(B) 

 

#Take the ratio of sizes 

similarity = len(nominator)/len(denominator) 

 

return similarity 

A = {1, 2, 3, 5, 7} 

B = {1, 2, 4, 8, 9} 

similarity = jaccard_similarity(A, B) 

 

print(similarity) 

 
0.25 

https://pyshark.com/python-set-operations/
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 A = {1, 2, 3, 5, 7}

 B = {1, 2, 4, 8, 9}

We begin by defining them in Python: 
 
 

Python 

Copy 

As the next step we will construct a function that takes set A and set B as parameters and 

then calculates the Jaccard similarity using set operations and returns it: 

Python 
Copy 

Then test our function: 
 
 

Python 

Copy 

And you should get: 

 

which is exactly the same as the statistic we calculated manually

A = {1, 2, 3, 5, 7} 

B = {1, 2, 4, 8, 9} 

def jaccard_distance(A, B): 

#Find symmetric difference of two sets 

nominator = A.symmetric_difference(B) 

 

#Find union of two sets 

denominator = A.union(B) 

 

#Take the ratio of sizes 

distance = len(nominator)/len(denominator) 

return distance 

distance = jaccard_distance(A, B) 

distance = jaccard_distance(A, B) 

 

print(distance) 

 
0.75 

https://pyshark.com/python-set-operations/
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Calculate similarity and distance of asymmetric binary attributes in Python 

We begin by importing the required dependencies: 
 
 

Python 

Copy 

Using the table we used in the theory section: 

 Apple Tomato Eggs Milk Coffee Sugar 

A 1 0 0 1 1 1 

B 0 0 1 1 1 0 

we can create the required binary vectors: 

 

Python 

Copy 

and then use the libraries’ function to calculate the Jaccard similarity and Jaccard 

distance: 
 
 

Python 

Copy 

And you should get: 

 

import numpy as np 

from scipy.spatial.distance import jaccard 

from sklearn.metrics import jaccard_score 

A = np.array([1,0,0,1,1,1]) 

B = np.array([0,0,1,1,1,0]) 

similarity = jaccard_score(A, B) 

distance = jaccard(A, B) 
 

print(f'Jaccard similarity is equal to: {similarity}') 

print(f'Jaccard distance is equal to: {distance}') 

 
Jaccard similarity is equal to: 0.4 

https://pyshark.com/jaccard-similarity-and-jaccard-distance-in-python/#similarity-and-distance-of-asymmetric-binary-vectors
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which is exactly the same as the statistic we calculated manually. 
 

 
 

 

c) Demonstrate the following Similarity and Dissimilarity Measures using python for 

EUCLIDEAN DISTANCE. 
 

 

 
Jaccard distance is equal to: 0.6 

# Python code to find Euclidean distance 

# using linalg.norm() 

 

 
# Import NumPy Library 

import numpy as np 

 

 
# initializing points in 

# numpy arrays 

point1 = np.array((4, 4, 2)) 

 
point2 = np.array((1, 2, 1)) 



122 

WISE                    III B.Tech I Sem DWDM Lab Manual                 R20 
 

 

 

Output 
 

3.7416573867739413  

 

 

 
d) Demonstrate the following Similarity and Dissimilarity Measures using python for 

Manhattan Distance. 
 

 

 

 

00# calculate Euclidean distance 

# using linalg.norm() method 

dist = np.linalg.norm(point1 - point2) 

 

 
 

# printing Euclidean distance 

print(dist) 

from math import sqrt 

 

#create function to calculate Manhattan distance 

def manhattan(a, b): 

return sum(abs(val1-val2) for val1, val2 in zip(a,b)) 

 

#define vectors 

A = [2, 4, 4, 6] 

B = [5, 5, 7, 8] 

 

#calculate Manhattan distance between vectors 

manhattan(A, B) 
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The Manhattan distance between these two vectors turns out to be 9. 
 

We can confirm this is correct by quickly calculating the Manhattan distance by hand: 

Σ|Ai – Bi| = |2-5| + |4-5| + |4-7| + |6-8| = 3 + 1 + 3 + 2 = 9. 

 
9 
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import numpy as np 

import matplotlib.pyplot as plt 

 

def estimate_coef(x, y): 

# number of observations/points 

n = np.size(x) 

 
# mean of x and y vector 

m_x = np.mean(x) 

m_y = np.mean(y) 

 
# calculating cross-deviation and deviation about x 

SS_xy = np.sum(y*x) - n*m_y*m_x 

SS_xx = np.sum(x*x) - n*m_x*m_x 

 
# calculating regression coefficients 

b_1 = SS_xy / SS_xx 

b_0 = m_y - b_1*m_x 

return (b_0, b_1) 

def plot_regression_line(x, y, b): 

# plotting the actual points as scatter plot 

plt.scatter(x, y, color = "m", 

marker = "o", s = 30) 

# predicted response vector 

y_pred = b[0] + b[1]*x 

 
# plotting the regression line 

plt.plot(x, y_pred, color = "g") 

 
# putting labels 

plt.xlabel('x') 

plt.ylabel('y') 

 
# function to show plot 

plt.show() 

 
def main(): 

# observations / data 

x = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) 

y = np.array([1, 3, 2, 5, 7, 8, 8, 9, 10, 12]) 

 
# estimating coefficients 

b = estimate_coef(x, y) 

print("Estimated coefficients:\nb_0 = {} \ 

\nb_1 = {}".format(b[0], b[1])) 

 
# plotting regression line 

plot_regression_line(x, y, b) 
 

if __name == " main ": 

main() 
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output: 

 

Estimated coefficients: 

b_0 = -0.0586206896552 

b_1 = 1.45747126437 
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Experiment-13: 

13.Visualize the data sets using matplotlib in python.(Histogram, Box Plot, Bar chart, Pie- 

Chart) 

Code for pie chart: 

import matplotlib.pyplot as plt 

# initializing the data 

 
x = [10, 20, 30, 40] 

 
y = [20, 25, 35, 55] 

 

# plotting the data 

plt.plot(x, y) 

plt.show() 

 

 

 

 

 

 

Output: 



127 

WISE                    III B.Tech I Sem DWDM Lab Manual                 R20 
 

 

Steps to plot a histogram in Python using Matplotlib 

Step 1: Install the Matplotlib package 

Install the Matplotlib package using the following command (under Windows): 

 
 

Step 2: Collect the data for the histogram 

For example, let’s say that you have the following data about the age of 100 individuals: 
 
 

Age 

1,1,2,3,3,5,7,8,9,10, 

10,11,11,13,13,15,16,17,18,18, 

18,19,20,21,21,23,24,24,25,25, 

25,25,26,26,26,27,27,27,27,27, 

29,30,30,31,33,34,34,34,35,36, 

36,37,37,38,38,39,40,41,41,42, 

43,44,45,45,46,47,48,48,49,50, 

51,52,53,54,55,55,56,57,58,60, 

61,63,64,65,66,68,70,71,72,74, 

75,77,81,83,84,87,89,90,90,91 

Step 3: Determine the number of bins 

set the number of bins to 10. At the end of this guide, I’ll show you another way to derive the bins. 

 
Step 4: Plot the histogram in Python using matplotlib 

to plot the histogram based on the template that you saw at the beginning of this guide: 

 

 
pip install matplotlib 

 
import matplotlib.pyplot as plt 

 

 

 

x = [value1, value2, value3, ... ] 

 
plt.hist(x, bins = number of bins) 

 
plt.show()And for our example, this is the complete Python code after applying the above template: 
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import matplotlib.pyplot as plt 

x = [1,1,2,3,3,5,7,8,9,10, 

10,11,11,13,13,15,16,17,18,18, 

 
18,19,20,21,21,23,24,24,25,25, 

 
25,25,26,26,26,27,27,27,27,27, 

 
29,30,30,31,33,34,34,34,35,36, 

 
36,37,37,38,38,39,40,41,41,42, 

 
43,44,45,45,46,47,48,48,49,50, 

 
51,52,53,54,55,55,56,57,58,60, 

 
61,63,64,65,66,68,70,71,72,74, 

 
75,77,81,83,84,87,89,90,90,91 

 
] 

plt.hist(x, bins=10) 

plt.show() 
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