
WISE III B.Tech I Sem DWDM Lab Manual R20

WISE Page 1

Experiment-1:

1. Creation of a datawarehouse.

A. Build Data Warehouse/Data Mart (using open source tools like Pentaho Data

Integration Tool, Pentaho Business Analytics; or other data warehouse tools like

Microsoft-SSIS,Informatica,Business Objects,etc.,)

A.(i) Identify source tables and populate sample data.

The data warehouse contains 4 tables:

1. Date dimension: contains every single date from 2006 to 2016.

2. Customer dimension: contains 100 customers. To be simple we’ll make it type 1 so we

don’t create a new row for each change.

3. Van dimension: contains 20 vans. To be simple we’ll make it type 1 so we don’t create a

new row for each change.

4. Hire fact table: contains 1000 hire transactions since 1st Jan 2011. It is a daily snapshot fact

table so that every day we insert 1000 rows into this fact table. So over time we can track

the changes of total bill, van charges, satnav income, etc.

Create the source tables and populate them

So now we are going to create the 3 tables in HireBase database: Customer, Van, and Hire. Then

we populate them.

First I’ll show you how it looks when it’s done:

WISE III B.Tech I Sem DWDM Lab Manual R20

WISE Page 2

Customer table:

Van table:

Hire table:

And here is the script to create and populate them:

WISE III B.Tech I Sem DWDM Lab Manual R20

WISE Page 3

-- Create database
create database HireBase

go

use HireBase

go

-- Create customer table

if exists (select * from sys.tables where name = 'Customer')

drop table Customer

go

create table Customer

(CustomerId varchar(20) not null primary key,

CustomerName varchar(30), DateOfBirth date, Town varchar(50),

TelephoneNo varchar(30), DrivingLicenceNo varchar(30), Occupation varchar(30)

)

go

-- Populate Customer
truncate table Customer
go

declare @i int, @si varchar(10), @startdate date

set @i = 1

while @i <= 100
begin

set @si = right('0'+CONVERT(varchar(10), @i),2)

insert into Customer

(CustomerId, CustomerName, DateOfBirth, Town, TelephoneNo, DrivingLicenceNo,

Occupation)

values

('N'+@si, 'Customer'+@si, DATEADD(d,@i-1,'2000-01-01'), 'Town'+@si, 'Phone'+@si,

'Licence'+@si, 'Occupation'+@si)

set @i = @i + 1

end

go

select * from Customer

-- Create Van table

if exists (select * from sys.tables where name = 'Van')

drop table Van

go

WISE III B.Tech I Sem DWDM Lab Manual R20

WISE Page 4

create table Van

(RegNo varchar(10) not null primary key,
Make varchar(30), Model varchar(30), [Year] varchar(4),

Colour varchar(20), CC int, Class varchar(10)

)

go

-- Populate Van table

truncate table Van

go

declare @i int, @si varchar(10)

set @i = 1

while @i <= 20

begin

set @si = convert(varchar, @i)

insert into Van

(RegNo, Make, Model, [Year], Colour, CC, Class)

values

('Reg'+@si, 'Make'+@si, 'Model'+@si,
case @i%4 when 0 then 2008 when 1 then 2009 when 2 then 2010 when 3 then 2011 end,

case when @i%5<3 then 'White' else 'Black' end,

case @i%3 when 0 then 2000 when 1 then 2500 when 2 then 3000 end,

case @i%3 when 0 then 'Small' when 1 then 'Medium' when 2 then 'Large' end)

set @i = @i + 1

end

go

select * from Van

-- Create Hire table

if exists (select * from sys.tables where name = 'Hire')

drop table Hire

go

create table Hire

(HireId varchar(10) not null primary key,

HireDate date not null,

CustomerId varchar(20) not null,
RegNo varchar(10), NoOfDays int, VanHire money, SatNavHire money,

Insurance money, DamageWaiver money, TotalBill money

)

go

WISE III B.Tech I Sem DWDM Lab Manual R20 [Year]

WISE Page 5

-- Populate Hire table

truncate table Hire
go

declare @i int, @si varchar(10), @DaysFrom1stJan int, @CustomerId int, @RegNo int, @mi int

set @i = 1

while @i <= 1000

begin

set @si = right('000'+convert(varchar(10), @i),4) -- string of i

set @DaysFrom1stJan = (@i-1)%200 --The Hire Date is derived from i modulo 200

set @CustomerId = (@i-1)%100+1 --The CustomerId is derived from i modulo 100

set @RegNo = (@i-1)%20+1 --The Van RegNo is derived from i modulo 20

set @mi = (@i-1)%3+1 --i modulo 3

insert into Hire (HireId, HireDate, CustomerId, RegNo, NoOfDays, VanHire, SatNavHire,

Insurance, DamageWaiver, TotalBill)

values ('H'+@si, DateAdd(d, @DaysFrom1stJan, '2011-01-01'),

left('N0'+CONVERT(varchar(10),@CustomerId),3), 'Reg'+CONVERT(varchar(10), @RegNo),

@mi, @mi*100, @mi*10, @mi*20, @mi*40, @mi*170)

set @i += 1

end

go

select * from Hire

Create the Data Warehouse

So now we are going to create the 3 dimension tables and 1 fact table in the data warehouse:

DimDate, DimCustomer, DimVan and FactHire. We are going to populate the 3 dimensions but

we’ll leave the fact table empty. The purpose of this article is to show how to populate the fact

table using SSIS.

First I’ll show you how it looks when it’s done:

WISE III B.Tech I Sem DWDM Lab Manual R20

WISE Page 6

Date Dimension:

Customer Dimension:

Van Dimension:

WISE III B.Tech I Sem DWDM Lab Manual R20

WISE Page 9

And then we do it. This is the script to create and populate those dim and fact tables:

-- Create the data warehouse
create database TopHireDW
go

use TopHireDW

go

-- Create Date Dimension

if exists (select * from sys.tables where name = 'DimDate')

drop table DimDate

go

create table DimDate

(DateKey int not null primary key,

[Year] varchar(7), [Month] varchar(7), [Date] date, DateString varchar(10))

go

-- Populate Date Dimension

truncate table DimDate

go

declare @i int, @Date date, @StartDate date, @EndDate date, @DateKey int,

@DateString varchar(10), @Year varchar(4),

@Month varchar(7), @Date1 varchar(20)

set @StartDate = '2006-01-01'

set @EndDate = '2016-12-31'

set @Date = @StartDate

insert into DimDate (DateKey, [Year], [Month], [Date], DateString)

values (0, 'Unknown', 'Unknown', '0001-01-01', 'Unknown') --The unknown row

while @Date <= @EndDate

begin

set @DateString = convert(varchar(10), @Date, 20)

set @DateKey = convert(int, replace(@DateString,'-',''))

set @Year = left(@DateString,4)

set @Month = left(@DateString, 7)

insert into DimDate (DateKey, [Year], [Month], [Date], DateString)

values (@DateKey, @Year, @Month, @Date, @DateString)

set @Date = dateadd(d, 1, @Date)

end

go

WISE III B.Tech I Sem DWDM Lab Manual R20

WISE Page 10

select * from DimDate

WISE III B.Tech I Sem DWDM Lab Manual R20

WISE Page 11

-- Create Customer dimension

if exists (select * from sys.tables where name = 'DimCustomer')

drop table DimCustomer

go

create table DimCustomer

(CustomerKey int not null identity(1,1) primary key,

CustomerId varchar(20) not null,

CustomerName varchar(30), DateOfBirth date, Town varchar(50),

TelephoneNo varchar(30), DrivingLicenceNo varchar(30), Occupation varchar(30)

)

go

insert into DimCustomer (CustomerId, CustomerName, DateOfBirth, Town, TelephoneNo,

DrivingLicenceNo, Occupation)

select * from HireBase.dbo.Customer

select * from DimCustomer

-- Create Van dimension

if exists (select * from sys.tables where name = 'DimVan')

drop table DimVan

go

create table DimVan

(VanKey int not null identity(1,1) primary key,

RegNo varchar(10) not null,

Make varchar(30), Model varchar(30), [Year] varchar(4),

Colour varchar(20), CC int, Class varchar(10)

)
go

insert into DimVan (RegNo, Make, Model, [Year], Colour, CC, Class)

select * from HireBase.dbo.Van

go

select * from DimVan

-- Create Hire fact table

if exists (select * from sys.tables where name = 'FactHire')

drop table FactHire

go

MRCET Page 12

WISE III B.Tech I Sem DWDM Lab Manual R20

create table FactHire

(SnapshotDateKey int not null, --Daily periodic snapshot fact table

HireDateKey int not null, CustomerKey int not null, VanKey int not null, --Dimension Keys

HireId varchar(10) not null, --Degenerate Dimension

NoOfDays int, VanHire money, SatNavHire money,

Insurance money, DamageWaiver money, TotalBill money

)
go

select * from FactHire

A.(ii). Design multi-demesional data models namely Star, Snowflake and Fact

Constellation schemas for any one enterprise (ex. Banking,Insurance, Finance,

Healthcare, manufacturing, Automobiles,sales etc).

Ans: SchemaDefinition

Multidimensional schema is defined using Data Mining Query Language (DMQL). The two

primitives, cube definition and dimension definition, can be used for defining the data warehouses

and data marts.

StarSchema

 Each dimension in a star schema is represented with only one-dimension table.

 This dimension table contains the set of attributes.

 The following diagram shows the sales data of a company with respect to the four

dimensions, namely time, item, branch, and location.

 There is a fact table at the center. It contains the keys to each of four dimensions.

 The fact table also contains the attributes, namely dollars sold and units sold.

MRCET Page 13

WISE III B.Tech I Sem DWDM Lab Manual R20

SnowflakeSchema

 Some dimension tables in the Snowflake schema are normalized.

 The normalization splits up the data into additional tables.

 Unlike Star schema, the dimensions table in a snowflake schema is normalized. For

example, the item dimension table in star schema is normalized and split into two

dimension tables, namely item and supplier table.

 Now the item dimension table contains the attributes item_key, item_name, type, brand,

and supplier-key.

 The supplier key is linked to the supplier dimension table. The supplier dimension table

contains the attributes supplier_key and supplier_type.

MRCET Page 14

WISE III B.Tech I Sem DWDM Lab Manual R20

Fact Constellation Schema

 A fact constellation has multiple fact tables. It is also known as galaxy schema.

s

 The following diagram shows two fact tables, namely sales and shipping.

 The sales fact table is same as that in the star schema.

 The shipping fact table has the five dimensions, namely item_key, time_key, shipper_key,

from_location, to_location.

 The shipping fact table also contains two measures, namely dollars sold and units sold.

 It is also possible to share dimension tables between fact tables. For example, time, item,

and location dimension tables are shared between the sales and shipping fact table.

WISE III B.Tech I Sem DWDM Lab Manual R20

A.(iii) Write ETL scripts and implement using data warehouse tools.

Ans:

ETL comes from Data Warehousing and stands for Extract-Transform-Load. ETL covers a process

of how the data are loaded from the source system to the data warehouse. Extraction–

transformation–loading (ETL) tools are pieces of software responsible for the extraction of data

from several sources, its cleansing, customization, reformatting, integration, and insertion into a

data warehouse.

Building the ETL process is potentially one of the biggest tasks of building a warehouse; it is

complex, time consuming, and consumes most of data warehouse project’s implementation efforts,

costs, and resources.

Building a data warehouse requires focusing closely on understanding three main areas:

1. Source Area- The source area has standard models such as entity relationship diagram.

2. Destination Area- The destination area has standard models such as star schema.

3. Mapping Area- But the mapping area has not a standard model till now.

MRCET Page 15

WISE III B.Tech I Sem DWDM Lab Manual R20

Abbreviations

 ETL-extraction–transformation–loading

 DW-data warehouse

 DM- data mart

 OLAP- on-line analytical processing

 DS-data sources

 ODS- operational data store

 DSA- data staging area

 DBMS- database management system

 OLTP-on-line transaction processing

 CDC-change data capture

 SCD-slowly changing dimension

 FCME- first-class modeling elements

 EMD-entity mapping diagram

 DSA-data storage area

ETL Process:

Extract

The Extract step covers the data extraction from the source system and makes it accessible for

further processing. The main objective of the extract step is to retrieve all the required data from

the source system with as little resources as possible. The extract step should be designed in a way

that it does not negatively affect the source system in terms or performance, response time or any

kind of locking.

There are several ways to perform the extract:

 Update notification - if the source system is able to provide a notification that a record has been

changed and describe the change, this is the easiest way to get the data.

 Incremental extract - some systems may not be able to provide notification that an update has

occurred, but they are able to identify which records have been modified and provide an extract of

such records. During further ETL steps, the system needs to identify changes and propagate it

down. Note, that by using daily extract, we may not be able to handle deleted records properly.

 Full extract - some systems are not able to identify which data has been changed at all, so a full

extract is the only way one can get the data out of the system. The full extract requires keeping a

copy of the last extract in the same format in order to be able to identify changes. Full extract

handles deletions as well.

MRCET Page 16

WISE III B.Tech I Sem DWDM Lab Manual R20

Transform

The transform step applies a set of rules to transform the data from the source to the target. This

includes converting any measured data to the same dimension (i.e. conformed dimension) using the

same units so that they can later be joined. The transformation step also requires joining data from

several sources, generating aggregates, generating surrogate keys, sorting, deriving new calculated

values, and applying advanced validation rules.

Load

During the load step, it is necessary to ensure that the load is performed correctly and with as little

resources as possible. The target of the Load process is often a database. In order to make the load

process efficient, it is helpful to disable any constraints and indexes before the load and enable

them back only after the load completes. The referential integrity needs to be maintained by ETL

tool to ensure consistency.

ETL method – nothin’ but SQL

ETL as scripts that can just be run on the database.These scripts must be re-runnable: they should
be able to be run without modification to pick up any changes in the legacy data, and automatically

work out how to merge the changes into the new schema.

In order to meet the requirements, my scripts must:

1. INSERT rows in the new tables based on any data in the source that hasn’t already been created in

the destination

2. UPDATE rows in the new tables based on any data in the source that has already been inserted in

the destination

3. DELETE rows in the new tables where the source data has been deleted

Now, instead of writing a whole lot of INSERT, UPDATE and DELETE statements, I thought

“surely MERGE would be both faster and better” – and in fact, that has turned out to be the case.

By writing all the transformations as MERGE statements, I’ve satisfied all the criteria, while also

making my code very easily modified, updated, fixed and rerun. If I discover a bug or a change

in requirements, I simply change the way the column is transformed in the MERGE statement, and

re-run the statement. It then takes care of working out whether to insert, update or delete each row.

My next step was to design the architecture for my custom ETL solution. I went to the dba with the

following design, which was approved and created for me:

1. create two new schemas on the new 11g database: LEGACY and MIGRATE

2. take a snapshot of all data in the legacy database, and load it as tables in the LEGACY schema

3. grant read-only on all tables in LEGACY to MIGRATE

4. grant CRUD on all tables in the target schema to MIGRATE.

MRCET page 17

WISE III B.Tech I Sem DWDM Lab Manual R20

For example, in the legacy database we have a table:

In the new model, we have a new table that represents the same kind of information:

LEGACY.BMS_PARTIES(

par_id NUMBER PRIMARY KEY,

par_domain VARCHAR2(10) NOT NULL,

par_first_name VARCHAR2(100) ,

par_last_name VARCHAR2(100),

par_dob DATE,

par_business_name VARCHAR2(250),

created_by VARCHAR2(30) NOT NULL,

creation_date DATE NOT NULL,

last_updated_by VARCHAR2(30),

last_update_date DATE)

NEW.TBMS_PARTY(

party_id NUMBER(9) PRIMARY KEY,

party_type_code VARCHAR2(10) NOT NULL,

first_name VARCHAR2(50),

surname VARCHAR2(100),

WISE III B.Tech I Sem DWDM Lab Manual R20

This was the simplest transformation you could possibly think of – the mapping from one to the
other is 1:1, and the columns almost mean the same thing.

The solution scripts start by creating an intermediary table:

date_of_birth DATE,

business_name VARCHAR2(300),

db_created_by VARCHAR2(50) NOT NULL,

db_created_on DATE DEFAULT SYSDATE NOT NULL,

db_modified_by VARCHAR2(50),

db_modified_on DATE,

version_id NUMBER(12) DEFAULT 1 NOT NULL)

MIGRATE.TBMS_PARTY(

old_par_id NUMBER PRIMARY KEY,

party_id NUMBER(9) NOT NULL,

party_type_code VARCHAR2(10) NOT NULL,

first_name VARCHAR2(50),

surname VARCHAR2(100),

date_of_birth DATE,

business_name VARCHAR2(300),

db_created_by VARCHAR2(50),

MRCET Page 18

WISE III B.Tech I Sem DWDM Lab Manual R20

The second step is the E and T parts of “ETL”: I query the legacy table, transform the data right

there in the query, and insert it into the intermediary table. However, since I want to be able to re•

run this script as often as I want, I wrote this as a MERGE statement:

MRCET page 19

db_created_on DATE,

db_modified_by VARCHAR2(50),

db_modified_on DATE,

deleted CHAR(1))

MERGE INTO MIGRATE.TBMS_PARTY dest

USING (

SELECT par_id AS old_par_id,

par_id AS party_id,

CASE par_domain

WHEN 'P' THEN 'PE' /*Person*/

WHEN 'O' THEN 'BU' /*Business*/

END AS party_type_code,

par_first_name AS first_name,

par_last_name AS surname,

par_dob AS date_of_birth,

par_business_name AS business_name,

WISE III B.Tech I Sem DWDM Lab Manual R20

created_by AS db_created_by,

creation_date AS db_created_on,

last_updated_by AS db_modified_by,

last_update_date AS db_modified_on

FROM LEGACY.BMS_PARTIES s

WHERE NOT EXISTS (

SELECT null

FROM MIGRATE.TBMS_PARTY d

WHERE d.old_par_id = s.par_id

AND (d.db_modified_on = s.last_update_date

OR (d.db_modified_on IS NULL

AND s.last_update_date IS NULL))

)

) src

ON (src.OLD_PAR_ID = dest.OLD_PAR_ID)

WHEN MATCHED THEN UPDATE SET

party_id = src.party_id ,

party_type_code = src.party_type_code ,

first_name = src.first_name ,

[Type text] Page 21

WISE III B.Tech I Sem DWDM Lab Manual R20

A.(iv) Perform Various OLAP operations such slice, dice, roll up, drill up and pivot.

Ans: OLAPOPERATIONS

Online Analytical Processing Server (OLAP) is based on the multidimensional data model. It

allows managers, and analysts to get an insight of the information through fast, consistent, and

interactive access to information.

OLAP operations in multidimensional data.

Here is the list of OLAP operations:

 Roll-up

 Drill-down

 Slice and dice

 Pivot (rotate)

Roll-up

Roll-up performs aggregation on a data cube in any of the following ways:

 By climbing up a concept hierarchy for a dimension

 By dimension reduction

The following diagram illustrates how roll-up works.

surname = src.surname ,

date_of_birth = src.date_of_birth ,

business_name = src.business_name ,

db_created_by = src.db_created_by ,

db_created_on = src.db_created_on ,

db_modified_by = src.db_modified_by ,

[Type text] Page 22

WISE III B.Tech I Sem DWDM Lab Manual R20

 Roll-up is performed by climbing up a concept hierarchy for the dimension location.

 Initially the concept hierarchy was "street < city < province < country".

 On rolling up, the data is aggregated by ascending the location hierarchy from the level of

city to the level of country.

 The data is grouped into cities rather than countries.

 When roll-up is performed, one or more dimensions from the data cube are removed.

Drill-down

Drill-down is the reverse operation of roll-up. It is performed by either of the following ways:

 By stepping down a concept hierarchy for a dimension

 By introducing a new dimension.

The following diagram illustrates how drill-down works:

[Type text] Page 23

WISE III B.Tech I Sem DWDM Lab Manual R20

 Drill-down is performed by stepping down a concept hierarchy for the dimension time.

 Initially the concept hierarchy was "day < month < quarter < year."

 On drilling down, the time dimension is descended from the level of quarter to the level of

month.

 When drill-down is performed, one or more dimensions from the data cube are added.

 It navigates the data from less detailed data to highly detailed data.

Slice

The slice operation selects one particular dimension from a given cube and provides a new sub-

cube. Consider the following diagram that shows how slice works.

MRCET page 24

WISE III B.Tech I Sem DWDM Lab Manual R20

 Here Slice is performed for the dimension "time" using the criterion time = "Q1".

 It will form a new sub-cube by selecting one or more dimensions.

Dice

Dice selects two or more dimensions from a given cube and provides a new sub-cube. Consider

the following diagram that shows the dice operation.

Page 25 MRCET

WISE III B.Tech I Sem DWDM Lab Manual R20

The dice operation on the cube based on the following selection criteria involves three

dimensions.

 (location = "Toronto" or "Vancouver")

 (time = "Q1" or "Q2")

 (item =" Mobile" or "Modem")

Pivot

The pivot operation is also known as rotation. It rotates the data axes in view in order to provide

an alternative presentation of data. Consider the following diagram that shows the pivot operation.

31 | P a g e

WISE III B.Tech I Sem DWDM Lab Manual R20

32 | P a g e

WISE III B.Tech I Sem DWDM Lab Manual R20

Experiment-2:

2. Explore machine learning tool “WEKA”

A.Explore WEKA Data Mining/Machine Learning Toolkit

B.(i) Downloading and/or installation of WEKA data mining toolkit.

Ans: Install Steps for WEKA a Data Mining Tool

1. Download the software as your requirements from the below given link.

http://www.cs.waikato.ac.nz/ml/weka/downloading.html

2. The Java is mandatory for installation of WEKA so if you have already Java on your

machine then download only WEKA else download the software with JVM.

3. Then open the file location and double click on the file

4. Click Next

http://www.cs.waikato.ac.nz/ml/weka/downloading.html

WISE III B.Tech I Sem DWDM Lab Manual R20

WISE Page 33

5. Click I Agree.

WISE III B.Tech I Sem DWDM Lab Manual R20

WISE Page 34

6. As your requirement do the necessary changes of settings and click Next. Full and

Associate files are the recommended settings.

7. Change to your desire installation location.

WISE III B.Tech I Sem DWDM Lab Manual R20

WISE Page 35

8. If you want a shortcut then check the box and click Install.

9. The Installation will start wait for a while it will finish within a minute.

WISE III B.Tech I Sem DWDM Lab Manual R20

WISE Page 36

10. After complete installation click on Next.

11. Hurray !!!!!!! That’s all click on the Finish and take a shovel and start Mining. Best of

Luck.

WISE III B.Tech I Sem DWDM Lab Manual R20

WISE Page 37

This is the GUI you get when started. You have 4 options Explorer, Experimenter,

KnowledgeFlow and Simple CLI.

B.(ii)Understand the features of WEKA tool kit such as Explorer, Knowledge flow interface,

Experimenter, command-line interface.

Ans: WEKA

Weka is created by researchers at the university WIKATO in New Zealand. University of

Waikato, Hamilton, New Zealand Alex Seewald (original Command-line primer) David Scuse

(original Experimenter tutorial)

 It is java based application.

 It is collection often source, Machine Learning Algorithm.

 The routines (functions) are implemented as classes and logically arranged in packages.

 It comes with an extensive GUI Interface.

 Weka routines can be used standalone via the command line interface.

The Graphical User Interface;-

The Weka GUI Chooser (class weka.gui.GUIChooser) provides a starting point for

launching Weka’s main GUI applications and supporting tools. If one prefers a MDI (“multiple

document interface”) appearance, then this is provided by an alternative launcher called “Main”

WISE III B.Tech I Sem DWDM Lab Manual R20

WISE Page 38

(class weka.gui.Main). The GUI Chooser consists of four buttons—one for each of the four major

Weka applications—and four menus.

The buttons can be used to start the following applications:

 Explorer An environment for exploring data with WEKA (the rest of this Documentation

deals with this application in more detail).

 Experimenter An environment for performing experiments and conducting statistical tests

between learning schemes.

 Knowledge Flow This environment supports essentially the same functions as the Explorer but

with a drag-and-drop interface. One advantage is that it supports incremental learning.

 SimpleCLI Provides a simple command-line interface that allows direct execution of WEKA

commands for operating systems that do not provide their own command line interface.

WISE III B.Tech I Sem DWDM Lab Manual R20

WISE Page 39

1. Explorer

The Graphical user interface

 Section Tabs

At the very top of the window, just below the title bar, is a row of tabs. When the Explorer

is first started only the first tab is active; the others are grayed out. This is because it is

necessary to open (and potentially pre-process) a data set before starting to explore the data.

The tabs are as follows:

1. Preprocess. Choose and modify the data being acted on.

2. Classify. Train & test learning schemes that classify or perform regression

3. Cluster. Learn clusters for the data.

4. Associate. Learn association rules for the data.

5. Select attributes. Select the most relevant attributes in the data.

6. Visualize. View an interactive 2D plot of the data.

Once the tabs are active, clicking on them flicks between different screens, on which the

respective actions can be performed. The bottom area of the window (including the status box, the

log button, and the Weka bird) stays visible regardless of which section you are in. The Explorer

can be easily extended with custom tabs. The Wiki article “Adding tabs in the Explorer”

explains this in detail.

2. Weka Experimenter:-

The Weka Experiment Environment enables the user to create, run, modify, and analyze

experiments in a more convenient manner than is possible when processing the schemes

individually. For example, the user can create an experiment that runs several schemes against a

series of datasets and then analyze the results to determine if one of the schemes is (statistically)

better than the other schemes.

WISE III B.Tech I Sem DWDM Lab Manual R20

WISE Page 40

The Experiment Environment can be run from the command line using the Simple CLI. For

example, the following commands could be typed into the CLI to run the OneR scheme on the Iris

dataset using a basic train and test process. (Note that the commands would be typed on one line

into the CLI.) While commands can be typed directly into the CLI, this technique is not particularly

convenient and the experiments are not easy to modify. The Experimenter comes in two flavors’,

either with a simple interface that provides most of the functionality one needs for experiments, or

with an interface with full access to the Experimenter’s capabilities. You can

choose between those two with the Experiment Configuration Mode radio buttons:

 Simple

 Advanced

Both setups allow you to setup standard experiments, that are run locally on a single machine,

or remote experiments, which are distributed between several hosts. The distribution of

experiments cuts down the time the experiments will take until completion, but on the other hand

the setup takes more time. The next section covers the standard experiments (both, simple and

advanced), followed by the remote experiments and finally the analyzing of the results.

WISE III B.Tech I Sem DWDM Lab Manual R20

WISE Page 41

3. Knowledge Flow

Introduction

The Knowledge Flow provides an alternative to the Explorer as a graphical front end to

WEKA’s core algorithms.

The Knowledge Flow presents a data-flow inspired interface to WEKA. The user can select

WEKA components from a palette, place them on a layout canvas and connect them together in

order to form a knowledge flow for processing and analyzing data. At present, all of WEKA’s

classifiers, filters, clusterers, associators, loaders and savers are available in the Knowledge

Flow along with some extra tools.

The Knowledge Flow can handle data either incrementally or in batches (the Explorer

handles batch data only). Of course learning from data incremen- tally requires a classifier that can

WISE III B.Tech I Sem DWDM Lab Manual R20

WISE Page 42

be updated on an instance by instance basis. Currently in WEKA there are ten classifiers that can

handle data incrementally.

The Knowledge Flow offers the following features:

 Intuitive data flow style layout.

 Process data in batches or incrementally.

 Process multiple batches or streams in parallel (each separate flow executes in its own

thread) .

 Process multiple streams sequentially via a user-specified order of execution.

 Chain filters together.

 View models produced by classifiers for each fold in a cross validation.

 Visualize performance of incremental classifiers during processing (scrolling plots of

classification accuracy, RMS error, predictions etc.).

 Plugin “perspectives” that add major new functionality (e.g. 3D data visualization, time

series forecasting environment etc.).

4. Simple CLI

The Simple CLI provides full access to all Weka classes, i.e., classifiers, filters, clusterers,

etc., but without the hassle of the CLASSPATH (it facilitates the one, with which Weka was

started). It offers a simple Weka shell with separated command line and output.

WISE III B.Tech I Sem DWDM Lab Manual R20

WISE Page 43

Commands

The following commands are available in the Simple CLI:

 Java <classname> [<args>]

Invokes a java class with the given arguments (if any).

 Break

Stops the current thread, e.g., a running classifier, in a friendly manner kill stops the current

thread in an unfriendly fashion.

 Cls

Clears the output area

 Capabilities <classname> [<args>]

Lists the capabilities of the specified class, e.g., for a classifier with its.

 option:

Capabilities weka.classifiers.meta.Bagging -W weka.classifiers.trees.Id3

 exit

Exits the Simple CLI

 help [<command>]

Provides an overview of the available commands if without a command name as argument,

otherwise more help on the specified command

WISE III B.Tech I Sem DWDM Lab Manual R20

WISE Page 44

Invocation

In order to invoke a Weka class, one has only to prefix the class with ”java”. This

command tells the Simple CLI to load a class and execute it with any given parameters. E.g., the

J48 classifier can be invoked on the iris dataset with the following command:

java weka.classifiers.trees.J48 -t c:/temp/iris.arff

This results in the following output:

Command redirection

Starting with this version of Weka one can perform a basic

redirection: java weka.classifiers.trees.J48 -t test.arff > j48.txt

Note: the > must be preceded and followed by a space, otherwise it is not recognized as redirection,

but part of another parameter.

Command completion

Commands starting with java support completion for classnames and filenames via Tab

(Alt+BackSpace deletes parts of the command again). In case that there are several matches, Weka

lists all possible matches.

 Package Name Completion java weka.cl<Tab>

Results in the following output of possible matches of

package names: Possible matches:

weka.classifiers

weka.clusterers

 Classname completion

WISE III B.Tech I Sem DWDM Lab Manual R20

WISE Page 45

java weka.classifiers.meta.A<Tab> lists the following classes

Possible matches:

weka.classifiers.meta.AdaBoostM1

weka.classifiers.meta.AdditiveRegression

weka.classifiers.meta.AttributeSelectedClassifier

 Filename Completion

In order for Weka to determine whether a the string under the cursor is a classname or a

filename, filenames need to be absolute (Unix/Linx: /some/path/file;Windows: C:\Some\Path\file)

or relative and starting with a dot (Unix/Linux:./some/other/path/file; Windows:

.\Some\Other\Path\file).

B.(iii)Navigate the options available in the WEKA(ex.select attributes panel,preprocess

panel,classify panel,cluster panel,associate panel and visualize)

Ans: Steps for identify options in WEKA

1. Open WEKA Tool.

2. Click on WEKA Explorer.

3. Click on Preprocessing tab button.

4. Click on open file button.

5. Choose WEKA folder in C drive.

6. Select and Click on data option button.

7. Choose iris data set and open file.

8. All tabs available in WEKA home page.

WISE III B.Tech I Sem DWDM Lab Manual R20

WISE Page 46

WISE III B.Tech I Sem DWDM Lab Manual R20

WISE Page 47

A. (iv) Study the ARFF file format

Ans: ARFF File Format

An ARFF (= Attribute-Relation File Format) file is an ASCII text file that describes a list of

instances sharing a set of attributes.

ARFF files are not the only format one can load, but all files that can be converted with

Weka’s “core converters”. The following formats are currently supported:

 ARFF (+ compressed)

 C4.5

 CSV

 libsvm

 binary serialized instances

 XRFF (+ compressed)

Overview

ARFF files have two distinct sections. The first section is the Header information, which is

followed the Data information. The Header of the ARFF file contains the name of the relation, a

list of the attributes (the columns in the data), and their types.

An example header on the standard IRIS dataset looks like this:

1. Title: Iris Plants Database

2. Sources:

(a) Creator: R.A. Fisher

(b) Donor: Michael Marshall (MARSHALL%PLU@io.arc.nasa.gov)

(c) Date: July, 1988

WISE III B.Tech I Sem DWDM Lab Manual R20

WISE Page 48

@RELATION iris

@ATTRIBUTE sepal length NUMERIC

@ATTRIBUTE sepal width NUMERIC

@ATTRIBUTE petal length NUMERIC

@ATTRIBUTE petal width NUMERIC

@ATTRIBUTE class {Iris-setosa, Iris-versicolor, Iris-irginica} The Data of the ARFF file looks

like the following:

@DATA

5.1,3.5,1.4,0.2,Iris-setosa

4.9,3.0,1.4,0.2,Iris-setosa

4.7,3.2,1.3,0.2,Iris-setosa

4.6,3.1,1.5,0.2,Iris-setosa

5.0,3.6,1.4,0.2,Iris-setosa

5.4,3.9,1.7,0.4,Iris-setosa

4.6,3.4,1.4,0.3,Iris-setosa

5.0,3.4,1.5,0.2,Iris-setosa

4.4,2.9,1.4,0.2,Iris-setosa

4.9,3.1,1.5,0.1,Iris-setosa

Lines that begin with a % are comments.

The @RELATION, @ATTRIBUTE and @DATA declarations are case insensitive.

The ARFF Header Section

The ARFF Header section of the file contains the relation declaration and at•

tribute declarations.

The @relation Declaration

The relation name is defined as the first line in the ARFF file. The format is: @relation

<relation-name>

WISE III B.Tech I Sem DWDM Lab Manual R20

WISE Page 49

where <relation-name> is a string. The string must be quoted if the name includes spaces.

WISE III B.Tech I Sem DWDM Lab Manual R20

WISE Page 50

The @attribute Declarations

Attribute declarations take the form of an ordered sequence of @attribute statements. Each

attribute in the data set has its own @attribute statement which uniquely defines the name

of that attribute and it’s data type. The order the attributes are declared indicates the

column position in the data section of the file. For example, if an attribute is the third one

declared then Weka expects that all that attributes values will be found in the third comma

delimited column.

The format for the @attribute statement is:

@attribute <attribute-name> <datatype>

where the <attribute-name> must start with an alphabetic character. If spaces are to be

included in the name then the entire name must be quoted.

The <datatype> can be any of the four types supported by Weka:

 numeric

 integer is treated as numeric

 real is treated as numeric

 <nominal-specification>

 string

 date [<date-format>]

 relational for multi-instance data (for future use)

where <nominal-specification> and <date-format> are defined below. The keywords numeric,

real, integer, string and date are case insensitive.

Numeric attributes

Numeric attributes can be real or integer numbers.

WISE III B.Tech I Sem DWDM Lab Manual R20

WISE Page 51

Nominal attributes

Nominal values are defined by providing an <nominal-specification> listing the possible

values: <nominal-name1>, <nominal-name2>, <nominal-name3>,

For example, the class value of the Iris dataset can be defined as follows: @ATTRIBUTE

class {Iris-setosa,Iris-versicolor,Iris-virginica} Values that contain spaces must be quoted.

String attributes

String attributes allow us to create attributes containing arbitrary textual values. This is very

useful in text-mining applications, as we can create datasets with string attributes, then

write Weka Filters to manipulate strings (like String- ToWordVectorFilter). String

attributes are declared as follows:

@ATTRIBUTE LCC string

Date attributes

Date attribute declarations take the form: @attribute <name> date [<date-format>] where

<name> is the name for the attribute and <date-format> is an optional string specifying how

date values should be parsed and printed (this is the same format used by

SimpleDateFormat). The default format string accepts the ISO-8601 combined date and

time format: yyyy-MM-dd’T’HH:mm:ss. Dates must be specified in the data section as the

corresponding string representations of the date/time (see example below).

Relational attributes

Relational attribute declarations take the form: @attribute <name> relational

<further attribute definitions> @end <name>

For the multi-instance dataset MUSK1 the definition would look like this (”...” denotes an

omission):

@attribute molecule_name {MUSK-jf78,...,NON-MUSK-199} @attribute bag relational

@attribute f1 numeric

...

@attribute f166 numeric @end bag

WISE III B.Tech I Sem DWDM Lab Manual R20

WISE Page 52

@attribute class {0,1}

WISE III B.Tech I Sem DWDM Lab Manual R20

WISE Page 53

The ARFF Data Section

The ARFF Data section of the file contains the data declaration line and the actual instance

lines.

The @data Declaration

The @data declaration is a single line denoting the start of the data segment in the file. The

format is:

@data

The instance data

Each instance is represented on a single line, with carriage returns denoting the end of the

instance. A percent sign (%) introduces a comment, which continues to the end of the line.

Attribute values for each instance are delimited by commas. They must appear in the order

that they were declared in the header section (i.e. the data corresponding to the nth

@attribute declaration is always the nth field of the attribute).

Missing values are represented by a single question mark, as in:

@data 4.4,?,1.5,?,Iris-setosa

Values of string and nominal attributes are case sensitive, and any that contain space or the

comment-delimiter character % must be quoted. (The code suggests that double-quotes are

acceptable and that a backslash will escape individual characters.)

string

An example follows: @relation LCCvsLCSH @attribute LCC string @attribute LCSH

WISE III B.Tech I Sem DWDM Lab Manual R20

WISE Page 54

@data

WISE III B.Tech I Sem DWDM Lab Manual R20

WISE Page 55

AG5, ’Encyclopedias and dictionaries.;Twentieth

century.’ AS262, ’Science -- Soviet Union -- History.’

AE5, ’Encyclopedias and dictionaries.’

AS281, ’Astronomy, Assyro-Babylonian.;Moon -- Phases.’

AS281, ’Astronomy, Assyro-Babylonian.;Moon -- Tables.’

Dates must be specified in the data section using the string representation specified in the

attribute declaration.

For example:

@RELATION Timestamps

@ATTRIBUTE timestamp DATE "yyyy-MM-dd HH:mm:ss" @DATA

"2001-04-03 12:12:12"

"2001-05-03 12:59:55"

Relational data must be enclosed within double quotes ”. For example an instance of the

MUSK1 dataset (”...” denotes an omission):

MUSK-188,"42,...,30",1

B.(v) Explore the available data sets in WEKA.

Ans: Steps for identifying data sets in WEKA

1. Open WEKA Tool.

2. Click on WEKA Explorer.

3. Click on open file button.

4. Choose WEKA folder in C drive.

5. Select and Click on data option button.

WISE III B.Tech I Sem DWDM Lab Manual R20

WISE Page 56

.

Sample Weka Data Sets

Below are some sample WEKA data sets, in arff format.

 contact-lens.arff

 cpu.arff

 cpu.with-vendor.arff

 diabetes.arff

 glass.arff

 ionospehre.arff

 iris.arff

 labor.arff

 ReutersCorn-train.arff

WISE III B.Tech I Sem DWDM Lab Manual R20

WISE Page 57

 ReutersCorn-test.arff

 ReutersGrain-train.arff

 ReutersGrain-test.arff

 segment-challenge.arff

 segment-test.arff

 soybean.arff

 supermarket.arff

 vote.arff

 weather.arff

 weather.nominal.arff

B. (vi) Load a data set (ex.Weather dataset,Iris dataset,etc.)

Ans: Steps for load the Weather data set.

1. Open WEKA Tool.

2. Click on WEKA Explorer.

3. Click on open file button.

4. Choose WEKA folder in C drive.

5. Select and Click on data option button.

6. Choose Weather.arff file and Open the file.

Steps for load the Iris data set.

1. Open WEKA Tool.

2. Click on WEKA Explorer.

3. Click on open file button.

4. Choose WEKA folder in C drive.

5. Select and Click on data option button.

6. Choose Iris.arff file and Open the file.

WISE III B.Tech I Sem DWDM Lab Manual R20

WISE Page 58

WISE III B.Tech I Sem DWDM Lab Manual R20

WISE Page 59

B. (vii) Load each dataset and observe the following:

B. (vii.i) List attribute names and they types

Ans: Example dataset-Weather.arff

List out the attribute names:

1. outlook

2. temperature

3. humidity

4. windy

5. play

page 57

WISE III B.Tech I Sem DWDM Lab Manual R20

B. (vii.ii) Number of records in each dataset.

Ans: @relation weather.symbolic

@attribute outlook {sunny, overcast, rainy}

@attribute temperature {hot, mild, cool}

@attribute humidity {high, normal}

@attribute windy {TRUE, FALSE}

@attribute play {yes, no}

@data

sunny,hot,high,FALSE,no

sunny,hot,high,TRUE,no

overcast,hot,high,FALSE,yes

rainy,mild,high,FALSE,yes

rainy,cool,normal,FALSE,yes

rainy,cool,normal,TRUE,no

overcast,cool,normal,TRUE,yes

sunny,mild,high,FALSE,no

sunny,cool,normal,FALSE,yes

rainy,mild,normal,FALSE,yes

sunny,mild,normal,TRUE,yes

overcast,mild,high,TRUE,yes

overcast,hot,normal,FALSE,yes

rainy,mild,high,TRUE,no

B. (vii.iii) Identify the class attribute (if any)

Ans: class attributes

1. sunny

2. overcast

3. rainy

Page 58

WISE III B.Tech I Sem DWDM Lab Manual R20

B. (vii.iv) Plot Histogram

Ans: Steps for identify the plot histogram

1. Open WEKA Tool.

2. Click on WEKA Explorer.

3. Click on Visualize button.

4. Click on right click button.

5. Select and Click on polyline option button.

Page 59

WISE III B.Tech I Sem DWDM Lab Manual R20

B. (vii.v) Determine the number of records for each class

Ans: @relation weather.symbolic

@data

sunny,hot,high,FALSE,no

sunny,hot,high,TRUE,no

overcast,hot,high,FALSE,yes

rainy,mild,high,FALSE,yes

rainy,cool,normal,FALSE,yes

rainy,cool,normal,TRUE,no

overcast,cool,normal,TRUE,yes

sunny,mild,high,FALSE,no

sunny,cool,normal,FALSE,yes

rainy,mild,normal,FALSE,yes

sunny,mild,normal,TRUE,yes

overcast,mild,high,TRUE,yes

overcast,hot,normal,FALSE,yes

rainy,mild,high,TRUE,no

B. (vii.vi) Visualize the data in various dimensions

Click on Visualize All button in WEKA Explorer.

Page 60

WISE III B.Tech I Sem DWDM Lab Manual R20

Experiment-3:

3. Perform data preprocessing tasks and Demonstrate performing

association rule mining on data sets

A. Explore various options in Weka for Preprocessing data and apply (like Discretization

Filters, Resample filter, etc.) n each dataset.

Ans:

Preprocess Tab

1. Loading Data

The first four buttons at the top of the preprocess section enable you to load data into

WEKA:

1. Open file.... Brings up a dialog box allowing you to browse for the data file on the local file

system.

2. Open URL Asks for a Uniform Resource Locator address for where the data is stored.

3. Open DB Reads data from a database. (Note that to make this work you might have to edit the

file in weka/experiment/DatabaseUtils.props.)

4. Generate Enables you to generate artificial data from a variety of Data Generators. Using the

Open file ... button you can read files in a variety of formats: WEKA’s ARFF format, CSV

format, C4.5 format, or serialized Instances format. ARFF files typically have a .arff extension,

CSV files a .csv extension, C4.5 files a .data and .names extension, and serialized Instances objects

a .bsi extension.

Page 61

WISE III B.Tech I Sem DWDM Lab Manual R20

Current Relation: Once some data has been loaded, the Preprocess panel shows a variety of

information. The Current relation box (the “current relation” is the currently loaded data,

which can be interpreted as a single relational table in database terminology) has three entries:

1. Relation. The name of the relation, as given in the file it was loaded from. Filters (described

below) modify the name of a relation.

2. Instances. The number of instances (data points/records) in the data.

3. Attributes. The number of attributes (features) in the data.

Working With Attributes

Below the Current relation box is a box titled Attributes. There are four buttons, and

beneath them is a list of the attributes in the current relation.

Page 62

WISE III B.Tech I Sem DWDM Lab Manual R20

The list has three columns:

1. No.. A number that identifies the attribute in the order they are specified in the data file.

2. Selection tick boxes. These allow you select which attributes are present in the relation.

3. Name. The name of the attribute, as it was declared in the data file. When you click on different

rows in the list of attributes, the fields change in the box to the right titled Selected attribute.

This box displays the characteristics of the currently highlighted attribute in the list:

1. Name. The name of the attribute, the same as that given in the attribute list.

2. Type. The type of attribute, most commonly Nominal or Numeric.

3. Missing. The number (and percentage) of instances in the data for which this attribute is missing

(unspecified).

4. Distinct. The number of different values that the data contains for this attribute.

5. Unique. The number (and percentage) of instances in the data having a value for this attribute

that no other instances have.

Below these statistics is a list showing more information about the values stored in this

attribute, which differ depending on its type. If the attribute is nominal, the list consists of each

possible value for the attribute along with the number of instances that have that value. If the

attribute is numeric, the list gives four statistics describing the distribution of values in the data—

the minimum, maximum, mean and standard deviation. And below these statistics there is a

coloured histogram, colour-coded according to the attribute chosen as the Class using the box

above the histogram. (This box will bring up a drop-down list of available selections when

clicked.) Note that only nominal Class attributes will result in a colour-coding. Finally, after

pressing the Visualize All button, histograms for all the attributes in the data are shown in a

separate window.

Returning to the attribute list, to begin with all the tick boxes are unticked.

Page 63

WISE III B.Tech I Sem DWDM Lab Manual R20

They can be toggled on/off by clicking on them individually. The four buttons above can

also be used to change the selection:

PREPROCESSING

1. All. All boxes are ticked.

2. None. All boxes are cleared (unticked).

3. Invert. Boxes that are ticked become unticked and vice versa.

4. Pattern. Enables the user to select attributes based on a Perl 5 Regular Expression. E.g., .* id

selects all attributes which name ends with id.

Once the desired attributes have been selected, they can be removed by clicking the Remove

button below the list of attributes. Note that this can be undone by clicking the Undo button, which

is located next to the Edit button in the top-right corner of the Preprocess panel.

Working with Filters:-

The preprocess section allows filters to be defined that transform the data in various

ways. The Filter box is used to set up the filters that are required. At the left of the Filter

box is a Choose button. By clicking this button it is possible to select one of the filters in

WEKA. Once a filter has been selected, its name and options are shown in the field next to

the Choose button. Clicking on this box with the left mouse button brings up a

GenericObjectEditor dialog box. A click with the right mouse button (or Alt+Shift+left

click) brings up a menu where you can choose, either to display the properties in a

GenericObjectEditor dialog box, or to copy the current setup string to the clipboard.

Page 64

WISE III B.Tech I Sem DWDM Lab Manual R20

The GenericObjectEditor Dialog Box

The GenericObjectEditor dialog box lets you configure a filter. The same kind

of dialog box is used to configure other objects, such as classifiers and clusterers

(see below). The fields in the window reflect the available options.

Right-clicking (or Alt+Shift+Left-Click) on such a field will bring up a popup menu, listing the

following options:

1. Show properties... has the same effect as left-clicking on the field, i.e., a dialog appears

allowing you to alter the settings.

2. Copy configuration to clipboard copies the currently displayed configuration string to the

system’s clipboard and therefore can be used anywhere else in WEKA or in the console. This is

rather handy if you have to setup complicated, nested schemes.

3. Enter configuration... is the “receiving” end for configurations that got copied to the

clipboard earlier on. In this dialog you can enter a class name followed by options (if the class

supports these). This also allows you to transfer a filter setting from the Preprocess panel to a

Filtered Classifier used in the Classify panel.

Page 65

WISE III B.Tech I Sem DWDM Lab Manual R20

Left-Clicking on any of these gives an opportunity to alter the filters settings. For example,

the setting may take a text string, in which case you type the string into the text field provided. Or

it may give a drop-down box listing several states to choose from. Or it may do something else,

depending on the information required. Information on the options is provided in a tool tip if you

let the mouse pointer hover of the corresponding field. More information on the filter and its

options can be obtained by clicking on the More button in the About panel at the top of the

GenericObjectEditor window.

Applying Filters

Once you have selected and configured a filter, you can apply it to the data by pressing the

Apply button at the right end of the Filter panel in the Preprocess panel. The Preprocess panel will

then show the transformed data. The change can be undone by pressing the Undo button. You can

also use the Edit...button to modify your data manually in a dataset editor. Finally, the Save...

button at the top right of the Preprocess panel saves the current version of the relation in file

formats that can represent the relation, allowing it to be kept for future use.

 Steps for run preprocessing tab in WEKA

1. Open WEKA Tool.

2. Click on WEKA Explorer.

3. Click on Preprocessing tab button.

4. Click on open file button.

5. Choose WEKA folder in C drive.

6. Select and Click on data option button.

7. Choose labor data set and open file.

8. Choose filter button and select the Unsupervised-Discritize option and apply

Dataset labor.arff

Page 66

WISE III B.Tech I Sem DWDM Lab Manual R20

The following screenshot shows the effect of discretization

MRCET Page 67

WISE III B.Tech I Sem DWDM Lab Manual R20

B. Load each dataset into Weka and run Aprior algorithm with different support and

confidence values. Study the rules generated.

Ans:

Steps for run Aprior algorithm in WEKA

1. Open WEKA Tool.

2. Click on WEKA Explorer.

3. Click on Preprocessing tab button.

4. Click on open file button.

5. Choose WEKA folder in C drive.

6. Select and Click on data option button.

7. Choose Weather data set and open file.

8. Click on Associate tab and Choose Aprior algorithm

9. Click on start button.

Output : === Run information ===

Scheme: weka.associations.Apriori -N 10 -T 0 -C 0.9 -D 0.05 -U 1.0 -M 0.1 -S -1.0 -c •

1

Relation: weather.symbolic

Instances: 14

Attributes: 5

outlook

temperature

humidity

windy

play

=== Associator model (full training set) ===

Apriori

=======

Minimum support: 0.15 (2 instances)

Minimum metric <confidence>: 0.9

Number of cycles performed: 17

MRCET Page 68

WISE III B.Tech I Sem DWDM Lab Manual R20

Generated sets of large itemsets:

Size of set of large itemsets L(1): 12

Size of set of large itemsets L(2): 47

Size of set of large itemsets L(3): 39

Size of set of large itemsets L(4): 6

Best rules found:

1. outlook=overcast 4 ==> play=yes 4 conf:(1)

2. temperature=cool 4 ==> humidity=normal 4 conf:(1)

3. humidity=normal windy=FALSE 4 ==> play=yes 4 conf:(1)

4. outlook=sunny play=no 3 ==> humidity=high 3 conf:(1)

5. outlook=sunny humidity=high 3 ==> play=no 3 conf:(1)

6. outlook=rainy play=yes 3 ==> windy=FALSE 3 conf:(1)

7. outlook=rainy windy=FALSE 3 ==> play=yes 3 conf:(1)

8. temperature=cool play=yes 3 ==> humidity=normal 3 conf:(1)

9. outlook=sunny temperature=hot 2 ==> humidity=high 2 conf:(1)

10. temperature=hot play=no 2 ==> outlook=sunny 2 conf:(1)

MRCET Page 69

WISE III B.Tech I Sem DWDM Lab Manual R20

Association Rule:

An association rule has two parts, an antecedent (if) and a consequent (then). An antecedent is an

item found in the data. A consequent is an item that is found in combination with the antecedent.

Association rules are created by analyzing data for frequent if/then patterns and using the

criteriasupport and confidence to identify the most important relationships. Support is an indication

of how frequently the items appear in the database. Confidence indicates the number of times the

if/then statements have been found to be true.

In data mining, association rules are useful for analyzing and predicting customer behavior. They

play an important part in shopping basket data analysis, product clustering, catalog design and store

layout.

Support and Confidence values:

 Support count: The support count of an itemset X, denoted by X.count, in a data set T is the

number of transactions in T that contain X. Assume T has n transactions.

 Then,

support
(X Y).count

n

confidence
(X Y).count

X .count

support = support({A U C})

confidence = support({A U C})/support({A})

Page 69

WISE III B.Tech I Sem DWDM Lab Manual R20

C. Apply different discretization filters on numerical attributes and run the Aprior

association rule algorithm. Study the rules generated. Derive interesting insights and observe

the effect of discretization in the rule generation process.

Ans: Steps for run Aprior algorithm in WEKA

1. Open WEKA Tool.

2. Click on WEKA Explorer.

3. Click on Preprocessing tab button.

4. Click on open file button.

5. Choose WEKA folder in C drive.

6. Select and Click on data option button.

7. Choose Weather data set and open file.

8. Choose filter button and select the Unsupervised-Discritize option and apply

9. Click on Associate tab and Choose Aprior algorithm

10. Click on start button.

WISE III B.Tech I Sem DWDM Lab Manual R20

Output : === Run information ===

Scheme: weka.associations.Apriori -N 10 -T 0 -C 0.9 -D 0.05 -U 1.0 -M 0.1 -S -1.0 -c •

1

Relation: weather.symbolic

Instances: 14

Attributes: 5

outlook

temperature

humidity

windy

play

=== Associator model (full training set) ===

Apriori

=======

Minimum support: 0.15 (2 instances)

Minimum metric <confidence>: 0.9

Number of cycles performed: 17

Generated sets of large itemsets:

Size of set of large itemsets L(1): 12

Size of set of large itemsets L(2): 47

Size of set of large itemsets L(3): 39

Size of set of large itemsets L(4): 6

Best rules found:

1. outlook=overcast 4 ==> play=yes 4 conf:(1)

2. temperature=cool 4 ==> humidity=normal 4 conf:(1)

3. humidity=normal windy=FALSE 4 ==> play=yes 4 conf:(1)

4. outlook=sunny play=no 3 ==> humidity=high 3 conf:(1)

5. outlook=sunny humidity=high 3 ==> play=no 3 conf:(1)

6. outlook=rainy play=yes 3 ==> windy=FALSE 3 conf:(1)

7. outlook=rainy windy=FALSE 3 ==> play=yes 3 conf:(1)

WISE III B.Tech I Sem DWDM Lab Manual R20

Experiment-4:

 4. Demonstrate performing classification on data sets.

Classification Tab

Selecting a Classifier

At the top of the classify section is the Classifier box. This box has a text fieldthat gives the

name of the currently selected classifier, and its options. Clicking on the text box with the left

mouse button brings up a GenericObjectEditor dialog box, just the same as for filters, that you can

use to configure the options of the current classifier. With a right click (or Alt+Shift+left click) you

can once again copy the setup string to the clipboard or display the properties in a

GenericObjectEditor dialog box. The Choose button allows you to choose one of the classifiers that

are available in WEKA.

Test Options

The result of applying the chosen classifier will be tested according to the options that are

set by clicking in the Test options box. There are four test modes:

1. Use training set. The classifier is evaluated on how well it predicts the class of the instances it

was trained on.

2. Supplied test set. The classifier is evaluated on how well it predicts the class of a set of

instances loaded from a file. Clicking the Set... button brings up a dialog allowing you to choose

the file to test on.

3. Cross-validation. The classifier is evaluated by cross-validation, using the number of folds that

are entered in the Folds text field.

4. Percentage split. The classifier is evaluated on how well it predicts a certain percentage of the

data which is held out for testing. The amount of data held out depends on the value entered in the

% field.

Classifier Evaluation Options:

1. Output model. The classification model on the full training set is output so that it can be

viewed, visualized, etc. This option is selected by default.

WISE III B.Tech I Sem DWDM Lab Manual R20

2. Output per-class stats. The precision/recall and true/false statistics for each class are output.

This option is also selected by default.

3. Output entropy evaluation measures. Entropy evaluation measures are included in the output.

This option is not selected by default.

4. Output confusion matrix. The confusion matrix of the classifier’s predictions is included in

the output. This option is selected by default.

5. Store predictions for visualization. The classifier’s predictions are remembered so that they

can be visualized. This option is selected by default.

6. Output predictions. The predictions on the evaluation data are output.

Note that in the case of a cross-validation the instance numbers do not correspond to the location in

the data!

7. Output additional attributes. If additional attributes need to be output alongside the

predictions, e.g., an ID attribute for tracking misclassifications, then the index of this attribute can

be specified here. The usual Weka ranges are supported,“first” and “last” are therefore valid

indices as well (example: “first-3,6,8,12-last”).

8. Cost-sensitive evaluation. The errors is evaluated with respect to a cost matrix. The Set...

button allows you to specify the cost matrix used.

9. Random seed for xval / % Split. This specifies the random seed used when randomizing the

data before it is divided up for evaluation purposes.

10. Preserve order for % Split. This suppresses the randomization of the data before splitting into

train and test set.

11. Output source code. If the classifier can output the built model as Java source code, you can

specify the class name here. The code will be printed in the “Classifier output” area.

The Class Attribute

The classifiers in WEKA are designed to be trained to predict a single ‘class’

WISE III B.Tech I Sem DWDM Lab Manual R20

attribute, which is the target for prediction. Some classifiers can only learn nominal classes; others

can only learn numeric classes (regression problems) still others can learn both.

By default, the class is taken to be the last attribute in the data. If you want

to train a classifier to predict a different attribute, click on the box below the Test options box to

bring up a drop-down list of attributes to choose from.

Training a Classifier

Once the classifier, test options and class have all been set, the learning process is started by

clicking on the Start button. While the classifier is busy being trained, the little bird moves around.

You can stop the training process at any time by clicking on the Stop button. When training is

complete, several things happen. The Classifier output area to the right of the display is filled with

text describing the results of training and testing. A new entry appears in the Result list box. We

look at the result list below; but first we investigate the text that has been output.

A. Load each dataset into Weka and run id3, j48 classification algorithm, study the classifier

output. Compute entropy values, Kappa ststistic.

Ans:

 Steps for run ID3 and J48 Classification algorithms in WEKA

1. Open WEKA Tool.

2. Click on WEKA Explorer.

3. Click on Preprocessing tab button.

4. Click on open file button.

5. Choose WEKA folder in C drive.

6. Select and Click on data option button.

7. Choose iris data set and open file.

8. Click on classify tab and Choose J48 algorithm and select use training set test option.

9. Click on start button.

10. Click on classify tab and Choose ID3 algorithm and select use training set test option.

11. Click on start button.

WISE III B.Tech I Sem DWDM Lab Manual R20

Output:

=== Run information ===

Scheme:weka.classifiers.trees.J48 -C 0.25 -M 2

Relation: iris

Instances: 150

Attributes: 5

sepallength

sepalwidth

petallength

petalwidth

class

Test mode:evaluate on training data

=== Classifier model (full training set) ===

J48 pruned tree

petalwidth <= 0.6: Iris-setosa (50.0)

petalwidth > 0.6

| petalwidth <= 1.7

| | petallength <= 4.9: Iris-versicolor (48.0/1.0)

| | petallength > 4.9

| | | petalwidth <= 1.5: Iris-virginica (3.0)

| | | petalwidth > 1.5: Iris-versicolor (3.0/1.0)

| petalwidth > 1.7: Iris-virginica (46.0/1.0)

Number of Leaves : 5

Size of the tree : 9

Time taken to build model: 0 seconds

=== Evaluation on training set ===

=== Summary ===

WISE III B.Tech I Sem DWDM Lab Manual R20

Correctly Classified Instances 147 98 %

Incorrectly Classified Instances 3 2 %

Kappa statistic 0.97

K&B Relative Info Score 14376.1925 %

K&B Information Score 227.8573 bits 1.519 bits/instance

Class complexity | order 0 237.7444 bits 1.585 bits/instance

Class complexity | scheme 16.7179 bits 0.1115 bits/instance

Complexity improvement (Sf) 221.0265 bits 1.4735 bits/instance

Mean absolute error 0.0233

Root mean squared error 0.108

Relative absolute error 5.2482 %

Root relative squared error 22.9089 %

Total Number of Instances 150

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision Recall F-Measure ROC Area Class

1 0 1 1 1 1 Iris-setosa

0.98 0.02 0.961 0.98 0.97 0.99 Iris-versicolor

0.96 0.01 0.98 0.96 0.97 0.99 Iris-virginica

Weighted Avg. 0.98 0.01 0.98 0.98 0.98 0.993

=== Confusion Matrix ===

a b c <-- classified as

50 0 0 | a = Iris-setosa

0 49 1 | b = Iris-versicolor

0 2 48 | c = Iris-virginica

WISE III B.Tech I Sem DWDM Lab Manual R20

The Classifier Output Text

The text in the Classifier output area has scroll bars allowing you to browse

the results. Clicking with the left mouse button into the text area, while holding Alt

and Shift, brings up a dialog that enables you to save the displayed output

in a variety of formats (currently, BMP, EPS, JPEG and PNG). Of course, you

can also resize the Explorer window to get a larger display area.

The output is

Split into several sections:

1. Run information. A list of information giving the learning scheme options, relation name,

instances, attributes and test mode that were involved in the process.

WISE III B.Tech I Sem DWDM Lab Manual R20

2. Classifier model (full training set). A textual representation of the classification model that was

produced on the full training data.

3. The results of the chosen test mode are broken down thus.

4. Summary. A list of statistics summarizing how accurately the classifier was able to predict the

true class of the instances under the chosen test mode.

5. Detailed Accuracy By Class. A more detailed per-class break down of the classifier’s

prediction accuracy.

6. Confusion Matrix. Shows how many instances have been assigned to each class. Elements show

the number of test examples whose actual class is the row and whose predicted class is the column.

7. Source code (optional). This section lists the Java source code if one

chose “Output source code” in the “More options” dialog.

B.Extract if-then rues from decision tree gentrated by classifier, Observe the confusion

matrix and derive Accuracy, F- measure, TPrate, FPrate , Precision and recall values. Apply

cross-validation strategy with various fold levels and compare the accuracy results.

Ans:

A decision tree is a structure that includes a root node, branches, and leaf nodes. Each internal

node denotes a test on an attribute, each branch denotes the outcome of a test, and each leaf node

holds a class label. The topmost node in the tree is the root node.

The following decision tree is for the concept buy_computer that indicates whether a customer at a

company is likely to buy a computer or not. Each internal node represents a test on an attribute.

Each leaf node represents a class.

WISE III B.Tech I Sem DWDM Lab Manual R20

The benefits of having a decision tree are as follows −

 It does not require any domain knowledge.

 It is easy to comprehend.

 The learning and classification steps of a decision tree are simple and fast.

IF-THEN Rules:

Rule-based classifier makes use of a set of IF-THEN rules for classification. We can express a rule

in the following from −

IF condition THEN conclusion

Let us consider a rule R1,

Points to remember −

 The IF part of the rule is called rule antecedent orprecondition.

 The THEN part of the rule is called rule consequent.

 The antecedent part the condition consist of one or more attribute tests and these tests are

logically ANDed.

 The consequent part consists of class prediction.

R1: IF age=youth AND student=yes

THEN buy_computer=yes

WISE III B.Tech I Sem DWDM Lab Manual R20

R1: (age = youth) ^ (student = yes))(buys computer = yes)

Note − We can also write rule R1 as follows:

If the condition holds true for a given tuple, then the antecedent is satisfied.

RuleExtraction

Here we will learn how to build a rule-based classifier by extracting IF-THEN rules from a

decision tree.

Points to remember −

 One rule is created for each path from the root to the leaf node.

 To form a rule antecedent, each splitting criterion is logically ANDed.

 The leaf node holds the class prediction, forming the rule consequent.

RuleInductionUsingSequentialCovering Algorithm

Sequential Covering Algorithm can be used to extract IF-THEN rules form the training data. We

do not require to generate a decision tree first. In this algorithm, each rule for a given class covers

many of the tuples of that class.

Some of the sequential Covering Algorithms are AQ, CN2, and RIPPER. As per the general

strategy the rules are learned one at a time. For each time rules are learned, a tuple covered by the

rule is removed and the process continues for the rest of the tuples. This is because the path to

each leaf in a decision tree corresponds to a rule.

Note − The Decision tree induction can be considered as learning a set of rules simultaneously.

The Following is the sequential learning Algorithm where rules are learned for one class at a time.

When learning a rule from a class Ci, we want the rule to cover all the tuples from class C only

and no tuple form any other class.

Algorithm: Sequential Covering

Input:

D, a data set class-labeled tuples,

Att_vals, the set of all attributes and their possible values.

WISE III B.Tech I Sem DWDM Lab Manual R20

Rule Pruning

The rule is pruned is due to the following reason −

 The Assessment of quality is made on the original set of training data. The rule may

perform well on training data but less well on subsequent data. That's why the rule pruning

is required.

 The rule is pruned by removing conjunct. The rule R is pruned, if pruned version of R has

greater quality than what was assessed on an independent set of tuples.

FOIL is one of the simple and effective method for rule pruning. For a given rule R,

FOIL_Prune = pos - neg / pos + neg

where pos and neg is the number of positive tuples covered by R, respectively.

Note − This value will increase with the accuracy of R on the pruning set. Hence, if the

FOIL_Prune value is higher for the pruned version of R, then we prune R.

 Steps for run decision tree algorithms in WEKA

1. Open WEKA Tool.

2. Click on WEKA Explorer.

3. Click on Preprocessing tab button.

Output: A Set of IF-THEN rules.

Method:

Rule_set={ }; // initial set of rules learned is empty

for each class c do

repeat

Rule = Learn_One_Rule(D, Att_valls, c);

remove tuples covered by Rule form D;

until termination condition;

Rule_set=Rule_set+Rule; // add a new rule to rule-set

end for

return Rule_Set;

WISE III B.Tech I Sem DWDM Lab Manual R20

4. Click on open file button.

5. Choose WEKA folder in C drive.

6. Select and Click on data option button.

7. Choose iris data set and open file.

8. Click on classify tab and Choose decision table algorithm and select cross-validation

folds value-10 test option.

9. Click on start button.

Output:

=== Run information ===

Scheme:weka.classifiers.rules.DecisionTable -X 1 -S "weka.attributeSelection.BestFirst -D

1 -N 5"

Relation: iris

Instances: 150

Attributes: 5

sepallength

sepalwidth

petallength

petalwidth

class

Test mode:10-fold cross-validation

=== Classifier model (full training set) ===

Decision Table:

Number of training instances: 150

Number of Rules : 3

Non matches covered by Majority class.

Best first.

Start set: no attributes

Search direction: forward

Stale search after 5 node expansions

Total number of subsets evaluated: 12

Merit of best subset found: 96

Evaluation (for feature selection): CV (leave one out)

Feature set: 4,5

WISE III B.Tech I Sem DWDM Lab Manual R20

Time taken to build model: 0.02 seconds

=== Stratified cross-validation ===

=== Summary ===

Correctly Classified Instances 139 92.6667 %

Incorrectly Classified Instances 11 7.3333 %

Kappa statistic 0.89

Mean absolute error 0.092

Root mean squared error 0.2087

Relative absolute error 20.6978 %

Root relative squared error 44.2707 %
Total Number of Instances 150

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision Recall F-Measure ROC Area Class

1 0 1 1 1 1 Iris-setosa

0.88 0.05 0.898 0.88 0.889 0.946 Iris-versicolor
0.9 0.06 0.882 0.9 0.891 0.947 Iris-virginica

Weighted Avg. 0.927 0.037 0.927 0.927 0.927 0.964

=== Confusion Matrix ===

a b c <-- classified as

50 0 0 | a = Iris-setosa

0 44 6 | b = Iris-versicolor

0 5 45 | c = Iris-virginica

WISE III B.Tech I Sem DWDM Lab Manual R20

C. Load each dataset into Weka and perform Naïve-bayes classification and k-Nearest

Neighbor classification, Interpret the results obtained.

Ans:

 Steps for run Naïve-bayes and k-nearest neighbor Classification algorithms in WEKA

1. Open WEKA Tool.

2. Click on WEKA Explorer.

3. Click on Preprocessing tab button.

4. Click on open file button.

5. Choose WEKA folder in C drive.

6. Select and Click on data option button.

7. Choose iris data set and open file.

8. Click on classify tab and Choose Naïve-bayes algorithm and select use training set test

option.

9. Click on start button.

10. Click on classify tab and Choose k-nearest neighbor and select use training set test

option.

11. Click on start button.

WISE III B.Tech I Sem DWDM Lab Manual R20

Output: Naïve Bayes

=== Run information ===

Scheme:weka.classifiers.bayes.NaiveBayes

Relation: iris

Instances: 150

Attributes: 5

sepallength

sepalwidth

petallength

petalwidth

class

Test mode:evaluate on training data

=== Classifier model (full training set) ===

Naive Bayes Classifier

Class

Attribute Iris-setosa Iris-versicolor Iris-virginica

(0.33) (0.33) (0.33)

===

sepallength

Mean 4.9913 5.9379 6.5795

std. dev. 0.355 0.5042 0.6353

weight sum 50 50 50

Precision 0.1059 0.1059 0.1059

sepalwidth

mean

3.4015

2.7687

2.9629

std. dev. 0.3925 0.3038 0.3088

weight sum 50 50 50

Precision 0.1091 0.1091 0.1091

petallength

WISE III B.Tech I Sem DWDM Lab Manual R20

Mean 1.4694 4.2452 5.5516

std. dev. 0.1782 0.4712 0.5529

weight sum 50 50 50

Precision 0.1405 0.1405 0.1405

petalwidth

mean

0.2743

1.3097

2.0343

std. dev. 0.1096 0.1915 0.2646

weight sum 50 50 50

Precision 0.1143 0.1143 0.1143

Time taken to build model: 0 seconds

=== Evaluation on training set ===

=== Summary ===

Correctly Classified Instances 144 96 %

Incorrectly Classified Instances 6 4 %

Kappa statistic 0.94

Mean absolute error 0.0324

Root mean squared error 0.1495

Relative absolute error 7.2883 %

Root relative squared error 31.7089 %

Total Number of Instances 150

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision Recall F-Measure ROC Area Class

1 0 1 1 1 1 Iris-setosa

0.96 0.04 0.923 0.96 0.941 0.993 Iris-versicolor

0.92 0.02 0.958 0.92 0.939 0.993 Iris-virginica

Weighted Avg. 0.96 0.02 0.96 0.96 0.96 0.995

=== Confusion Matrix ===

WISE III B.Tech I Sem DWDM Lab Manual R20

a b c <-- classified as

50 0 0 | a = Iris-setosa

0 48 2 | b = Iris-versicolor

0 4 46 | c = Iris-virginica.

Output: KNN (IBK)

=== Run information ===

Scheme:weka.classifiers.lazy.IBk -K 1 -W 0 -A "weka.core.neighboursearch.LinearNNSearch -A

\"weka.core.EuclideanDistance -R first-last\""

Relation: iris

Instances: 150

Attributes: 5

sepallength

sepalwidth

petallength

WISE III B.Tech I Sem DWDM Lab Manual R20

petalwidth

class

Test mode:evaluate on training data

=== Classifier model (full training set) ===

IB1 instance-based classifier

using 1 nearest neighbour(s) for classification

Time taken to build model: 0 seconds

=== Evaluation on training set ===

=== Summary ===

Correctly Classified Instances 150 100 %

Incorrectly Classified Instances 0 0 %

Kappa statistic

Mean absolute error

1

0.0085

Root mean squared error 0.0091

Relative absolute error 1.9219 %

Root relative squared error 1.9335 %

Total Number of Instances 150

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision Recall F-Measure ROC Area Class

Weighted Avg. 1 0 1 1 1 1

=== Confusion Matrix ===

a b c <-- classified as

50 0 0 | a = Iris-setosa

0 50 0 | b = Iris-versicolor

0 0 50 | c = Iris-virginica

1 0 1 1 1 1 Iris-setosa

1 0 1 1 1 1 Iris-versicolor

1 0 1 1 1 1 Iris-virginica

WISE III B.Tech I Sem DWDM Lab Manual R20

D. Plot RoC Curves.

Ans: Steps for identify the plot RoC Curves.

1. Open WEKA Tool.

2. Click on WEKA Explorer.

3. Click on Visualize button.

4. Click on right click button.

5. Select and Click on polyline option button.

WISE III B.Tech I Sem DWDM Lab Manual R20

E. Compare classification results of ID3,J48, Naïve-Bayes and k-NN classifiers for each

dataset , and reduce which classifier is performing best and poor for each dataset and justify.

Ans:

 Steps for run ID3 and J48 Classification algorithms in WEKA

1. Open WEKA Tool.

2. Click on WEKA Explorer.

3. Click on Preprocessing tab button.

4. Click on open file button.

5. Choose WEKA folder in C drive.

6. Select and Click on data option button.

7. Choose iris data set and open file.

8. Click on classify tab and Choose J48 algorithm and select use training set test option.

Page 89

WISE III B.Tech I Sem DWDM Lab Manual R20

J48:

9. Click on start button.

10. Click on classify tab and Choose ID3 algorithm and select use training set test option.

11. Click on start button.

12. Click on classify tab and Choose Naïve-bayes algorithm and select use training set test

option.

13. Click on start button.

14. Click on classify tab and Choose k-nearest neighbor and select use training set test

option.

15. Click on start button.

=== Run information ===

Scheme:weka.classifiers.trees.J48 -C 0.25 -M 2

Relation: iris

Instances: 150

Attributes: 5

sepallength

sepalwidth

petallength

petalwidth

class

Test mode:evaluate on training data

=== Classifier model (full training set) ===

J48 pruned tree

petalwidth <= 0.6: Iris-setosa (50.0)

petalwidth > 0.6

| petalwidth <= 1.7

| | petallength <= 4.9: Iris-versicolor (48.0/1.0)

| | petallength > 4.9

| | | petalwidth <= 1.5: Iris-virginica (3.0)

| | | petalwidth > 1.5: Iris-versicolor (3.0/1.0)

| petalwidth > 1.7: Iris-virginica (46.0/1.0)

Number of Leaves : 5

WISE III B.Tech I Sem DWDM Lab Manual R20

Size of the tree : 9

Time taken to build model: 0 seconds

=== Evaluation on training set ===

=== Summary ===

Correctly Classified Instances 147 98 %

Incorrectly Classified Instances 3 2 %

Kappa statistic 0.97

Mean absolute error 0.0233

Root mean squared error 0.108

Relative absolute error 5.2482 %

Root relative squared error 22.9089 %

Total Number of Instances 150

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision Recall F-Measure ROC Area Class

1 0 1 1 1 1 Iris-setosa

0.98 0.02 0.961 0.98 0.97 0.99 Iris-versicolor

0.96 0.01 0.98 0.96 0.97 0.99 Iris-virginica

Weighted Avg. 0.98 0.01 0.98 0.98 0.98 0.993

=== Confusion Matrix ===

a b c <-- classified as

50 0 0 | a = Iris-setosa

0 49 1 | b = Iris-versicolor

0 2 48 | c = Iris-virginica

Naïve-bayes:

=== Run information ===

Scheme:weka.classifiers.bayes.NaiveBayes

Relation: iris

Instances: 150

Attributes: 5

sepallength

WISE III B.Tech I Sem DWDM Lab Manual R20

sepalwidth

petallength

petalwidth

class

Test mode:evaluate on training data

=== Classifier model (full training set) ===

Naive Bayes Classifier

Class

Attribute Iris-setosa Iris-versicolor Iris-virginica

(0.33) (0.33) (0.33)

===

sepallength

Mean 4.9913 5.9379 6.5795

std. dev. 0.355 0.5042 0.6353

weight sum 50 50 50

Precision 0.1059 0.1059 0.1059

sepalwidth

mean

3.4015

2.7687

2.9629

std. dev. 0.3925 0.3038 0.3088

weight sum 50 50 50

Precision 0.1091 0.1091 0.1091

petallength

mean

1.4694

4.2452

5.5516

std. dev. 0.1782 0.4712 0.5529

weight sum 50 50 50

Precision 0.1405 0.1405 0.1405

petalwidth

mean

0.2743

1.3097

2.0343

std. dev. 0.1096 0.1915 0.2646

weight sum 50 50 50

Precision 0.1143 0.1143 0.1143

Time taken to build model: 0 seconds

=== Evaluation on training set ===

WISE III B.Tech I Sem DWDM Lab Manual R20

=== Summary ===

Correctly Classified Instances 144 96 %

Incorrectly Classified Instances 6 4 %

Kappa statistic 0.94

Mean absolute error 0.0324

Root mean squared error 0.1495

Relative absolute error 7.2883 %

Root relative squared error 31.7089 %

Total Number of Instances 150

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision Recall F-Measure ROC Area Class

1 0 1 1 1 1 Iris-setosa

0.96 0.04 0.923 0.96 0.941 0.993 Iris-versicolor

0.92 0.02 0.958 0.92 0.939 0.993 Iris-virginica

Weighted Avg. 0.96 0.02 0.96 0.96 0.96 0.995

=== Confusion Matrix ===

a b c <-- classified as

50 0 0 | a = Iris-setosa

0 48 2 | b = Iris-versicolor

0 4 46 | c = Iris-virginica

K-Nearest Neighbor (IBK):

=== Run information ===

Scheme:weka.classifiers.lazy.IBk -K 1 -W 0 -A "weka.core.neighboursearch.LinearNNSearch -A

\"weka.core.EuclideanDistance -R first-last\""

Relation: iris

Instances: 150

Attributes: 5

sepallength

sepalwidth

petallength

petalwidth

class

Test mode:evaluate on training data

=== Classifier model (full training set) ===

WISE III B.Tech I Sem DWDM Lab Manual R20

IB1 instance-based classifier

using 1 nearest neighbour(s) for classification

Time taken to build model: 0 seconds

=== Evaluation on training set ===

=== Summary ===

Correctly Classified Instances 150 100 %

Incorrectly Classified Instances 0 0 %

Kappa statistic 1

Mean absolute error 0.0085

Root mean squared error 0.0091

Relative absolute error 1.9219 %

Root relative squared error 1.9335 %

Total Number of Instances 150

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision Recall F-Measure ROC Area Class

Weighted Avg. 1 0 1 1 1 1

=== Confusion Matrix ===

a b c <-- classified as

50 0 0 | a = Iris-setosa

0 50 0 | b = Iris-versicolor

0 0 50 | c = Iris-virginica

1 0 1 1 1 1 Iris-setosa

1 0 1 1 1 1 Iris-versicolor

1 0 1 1 1 1 Iris-virginica

WISE III B.Tech I Sem DWDM Lab Manual R20

Experiment:5

5. Demonstrate performing clustering on data sets Clustering Tab

Selecting a Clusterer

By now you will be familiar with the process of selecting and configuring objects. Clicking

on the clustering scheme listed in the Clusterer box at the top of the

window brings up a GenericObjectEditor dialog with which to choose a new

clustering scheme.

Cluster Modes

The Cluster mode box is used to choose what to cluster and how to evaluate

the results. The first three options are the same as for classification: Use training set, Supplied test

set and Percentage split (Section 5.3.1)—except that now the data is assigned to clusters instead of

trying to predict a specific class. The fourth mode, Classes to clusters evaluation, compares how

well the chosen clusters match up with a pre-assigned class in the data. The drop-down box below

this option selects the class, just as in the Classify panel.

An additional option in the Cluster mode box, the Store clusters for visualization tick box,

determines whether or not it will be possible to visualize the clusters once training is complete.

When dealing with datasets that are so large that memory becomes a problem it may be helpful to

disable this option.

Ignoring Attributes

Often, some attributes in the data should be ignored when clustering. The Ignore attributes

button brings up a small window that allows you to select which attributes are ignored. Clicking on

an attribute in the window highlights it, holding down the SHIFT key selects a range

of consecutive attributes, and holding down CTRL toggles individual attributes on and off. To

cancel the selection, back out with the Cancel button. To activate it, click the Select button. The

next time clustering is invoked, the selected attributes are ignored.

Working with Filters

WISE III B.Tech I Sem DWDM Lab Manual R20

The Filtered Clusterer meta-clusterer offers the user the possibility to apply filters directly

before the clusterer is learned. This approach eliminates the manual application of a filter in the

Preprocess panel, since the data gets processed on the fly. Useful if one needs to try out different

filter setups.

Learning Clusters

The Cluster section, like the Classify section, has Start/Stop buttons, a result text area and a

result list. These all behave just like their classification counterparts. Right-clicking an entry in the

result list brings up a similar menu, except that it shows only two visualization options: Visualize

cluster assignments and Visualize tree. The latter is grayed out when it is not applicable.

A.Load each dataset into Weka and run simple k-means clustering algorithm with different

values of k(number of desired clusters). Study the clusters formed. Observe the sum of

squared errors and centroids, and derive insights.

Ans:

 Steps for run K-mean Clustering algorithms in WEKA

1. Open WEKA Tool.

2. Click on WEKA Explorer.

3. Click on Preprocessing tab button.

4. Click on open file button.

5. Choose WEKA folder in C drive.

6. Select and Click on data option button.

7. Choose iris data set and open file.

8. Click on cluster tab and Choose k-mean and select use training set test option.

9. Click on start button.

Output:

=== Run information ===

Scheme:weka.clusterers.SimpleKMeans -N 2 -A "weka.core.EuclideanDistance -R first-last" -I 500

-S 10

Relation: iris

WISE III B.Tech I Sem DWDM Lab Manual R20

Instances: 150

Attributes: 5

sepallength

sepalwidth

petallength

petalwidth

class

Test mode:evaluate on training data

=== Model and evaluation on training set ===

kMeans

======

Number of iterations: 7

Within cluster sum of squared errors: 62.1436882815797

Missing values globally replaced with mean/mode

Cluster centroids:

Cluster#

Attribute Full Data 0 1

(150) (100) (50)

==

sepallength 5.8433 6.262 5.006

sepalwidth 3.054 2.872 3.418

petallength 3.7587 4.906 1.464

petalwidth 1.1987 1.676 0.244

class Iris-setosa Iris-versicolor Iris-setosa

Time taken to build model (full training data) : 0 seconds

=== Model and evaluation on training set ===

Clustered Instances

0 100 (67%)

1 50 (33%)

WISE III B.Tech I Sem DWDM Lab Manual R20

B.Explore other clustering techniques available in Weka.

Ans: Clustering Algorithms And Techniques in WEKA, They are

WISE III B.Tech I Sem DWDM Lab Manual R20

C.Explore visualization features of weka to visualize the clusters. Derive interesting insights

and explain.

Ans: Visualize Features

WEKA’s visualization allows you to visualize a 2-D plot of the current working relation.

Visualization is very useful in practice, it helps to determine difficulty of the learning problem.

WEKA can visualize single attributes (1-d) and pairs of attributes (2-d), rotate 3-d visualizations

(Xgobi-style). WEKA has “Jitter” option to deal with nominal attributes and to detect “hidden”

data points.

Access To Visualization From The Classifier, Cluster And Attribute Selection Panel Is Available

From A Popup Menu. Click The Right Mouse Button Over An Entry In The Result List To Bring

Up The Menu. You Will Be Presented With Options For Viewing Or Saving The Text Output And

--- Depending On The Scheme --- Further Options For Visualizing Errors, Clusters, Trees Etc.

To open Visualization screen, click ‘Visualize’ tab.

WISE III B.Tech I Sem DWDM Lab Manual R20

Select a square that corresponds to the attributes you would like to visualize. For example, let’s

choose ‘outlook’ for X – axis and ‘play’ for Y – axis. Click anywhere inside the square that

corresponds to ‘play o

Changing the View:

In the visualization window, beneath the X-axis selector there is a drop-down list,

‘Colour’, for choosing the color scheme. This allows you to choose the color of points based on

the attribute selected. Below the plot area, there is a legend that describes what values the colors

correspond to. In your example, red represents ‘no’, while blue represents ‘yes’. For better

visibility you should change the color of label ‘yes’. Left-click on ‘yes’ in the ‘Class colour’ box

and select lighter color from the color palette.

n the left and ‘outlook’ at the top.

page100

101

WISE III B.Tech I Sem DWDM Lab Manual R20

Experiment-6:

6.Write a java program to prepare a simulated data set with unique instances

Creating new dataset java

Dataset dt = new DefaultDataset (); // creation syntax for the dataset
for
{

(b=0, b<8, b++) // condition setting

Instnc inst_1 = Instnc.randomInstnc(12); // defining the instance for the dataset
Dt.add(inst_1);
}

//adding the instance for the dataset

This program is used for creating and iterating the entire dataset representing the car name and car

characteristic when getting a sql query to be performed over it.

public
public

class Cars_dtset {
;

public String car_description;
public int car_no;
}
interface Actual_Query extends Bs_Query {
@Select("select car_name, car_description, car_no from Cars_dtset")
DataSet<Cars_dtset> getAllCars_dtset();
}
Actual_Query mq_0 = con.createQueryObject(Actual_Query.class);
DataSet rows = mq_0.getAllCars_dtset();
for (Cars_dtset mq_0: rows) {
System.out.println("CarName = " + mq_0.car_name);
System.out.println("CarDescription = " + mq_0.car_description);
}

String car_name

102

WISE III B.Tech I Sem DWDM Lab Manual R20

7.Write a python program to generate frequent item sets/association rules using apriori

 Experiment-7:

algorithm.

Step 1: Data preprocessing

 Installing the required package

!pip install apyori

 Importing the libraries

 Importing the dataset

Data = pd.read_csv('/content/drive/MyDrive/Market_Basket_Optimisation.csv', header =

None)

 Transforming our pandas dataset into a list dataset

Step 2: Training apriori model

Step 3: Visualising the results

from apyori import apriori

rule = apriori(transactions = transacts, min_support = 0.003, min_confidence = 0.2,

min_lift = 3, min_length = 2, max_length = 2)

import numpy as np

import matplotlib.pyplot as plt

import pandas as pd

Intializing the list

transacts = []

populating a list of transactions

for i in range(0, 7501):

transacts.append([str(Data.values[i,j]) for j in range(0, 20)])

103

WISE III B.Tech I Sem DWDM Lab Manual R20

output = list(rule) # returns a non-tabular output

putting output into a pandas dataframe

def inspect(output):

lhs

rhs

= [tuple(result[2][0][0])[0] for result in output]

= [tuple(result[2][0][1])[0] for result in output]

support = [result[1] for result in output]

confidence = [result[2][0][2] for result in output]

lift = [result[2][0][3] for result in output]

return list(zip(lhs, rhs, support, confidence, lift))

output_DataFrame = pd.DataFrame(inspect(results), columns = ['Left_Hand_Side',

'Right_Hand_Side', 'Support', 'Confidence', 'Lift'])

output_DataFrame

104

WISE III B.Tech I Sem DWDM Lab Manual R20

Output:

105

WISE III B.Tech I Sem DWDM Lab Manual R20

Experiment-8:

8. Write a program to calculate chi-square value using python. Report your observation.

We need to compare the obtained p-value with alpha value of 0.05.

from scipy.stats import chi2_contingency

defining the table

data = [[207, 282, 241], [234, 242, 232]]

stat, p, dof, expected = chi2_contingency(data)

interpret p-value

alpha = 0.05

print("p value is " + str(p))

if p <= alpha:

print('Dependent (reject H0)')

else:

print('Independent (H0 holds true)')

Output :

p value is 0.1031971404730939

Independent (H0 holds true)

106

WISE III B.Tech I Sem DWDM Lab Manual R20

Experiment-9:

9. Write a program of Naïve Bayesian classification using python programming language

Code:

Importing the libraries

import numpy as np

import matplotlib.pyplot as plt

import pandas as pd

Importing the dataset

dataset = pd.read_csv('Social_Network_Ads.csv')

X = dataset.iloc[:, [2, 3]].values

y = dataset.iloc[:, -1].values

Splitting the dataset into the Training set and Test set

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.20, random_state = 0)

Feature Scaling

from sklearn.preprocessing import StandardScaler

sc = StandardScaler()

X_train = sc.fit_transform(X_train)

X_test = sc.transform(X_test)

Training the Naive Bayes model on the Training set

from sklearn.naive_bayes import GaussianNB

classifier = GaussianNB()

classifier.fit(X_train, y_train)

107

WISE III B.Tech I Sem DWDM Lab Manual R20

Predicting the Test set results

y_pred = classifier.predict(X_test)

Making the Confusion Matrix

from sklearn.metrics import confusion_matrix, accuracy_score

ac = accuracy_score(y_test,y_pred)

cm = confusion_matrix(y_test, y_pred)

108

WISE III B.Tech I Sem DWDM Lab Manual R20

Experiment-10:

10. Implement a java program to perform Apriori algorithm.

Code:

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

import re

from mlxtend.frequent_patterns import apriori

from mlxtend.frequent_patterns import association_rules

from mlxtend.preprocessing import TransactionEncoder

from mpl_toolkits.mplot3d import Axes3D

import networkx as nx

basket = pd.read_csv("Groceries_dataset.csv")

display(basket.head())

out put:

:

109

WISE III B.Tech I Sem DWDM Lab Manual R20

Experiment-11:

11. Write a program of cluster analysis using simple k-means algorithm Python

Programming language.

Code:

import numpy as np

import pandas as pd

from matplotlib import pyplot as plt

from sklearn.datasets.samples_generator import make_blobs

from sklearn.cluster import KMeans

X, y = make_blobs(n_samples=300, centers=4, cluster_std=0.60,

random_state=0)plt.scatter(X[:,0], X[:,1])

wcss = []for i in range(1, 11):

kmeans = KMeans(n_clusters=i, init='k-means++', max_iter=300, n_init=10, random_state=0)

kmeans.fit(X)

wcss.append(kmeans.inertia_)

plt.plot(range(1, 11), wcss)

plt.title('Elbow Method')

plt.xlabel('Number of clusters')

plt.ylabel('WCSS')

plt.show()

kmeans = KMeans(n_clusters=4, init='k-means++', max_iter=300, n_init=10, random_state=0)

pred_y = kmeans.fit_predict(X)plt.scatter(X[:,0], X[:,1])

plt.scatter(kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:, 1], s=300, c='red')

plt.show()

110

WISE III B.Tech I Sem DWDM Lab Manual R20

OUTPUT:

111

WISE III B.Tech I Sem DWDM Lab Manual R20

Experiment-12:

12. Write a program to compute/display dissimilarity matrix using python.

a) Demonstrate the following Similarity and Dissimilarity Measures using python FOR

Cosine Similarity.

we calculate the Cosine Similarity between the two non-zero vectors. A vector is a single

dimesingle-dimensional signal NumPy array. Cosine similarity is a measure of similarity,

often used to measure document similarity in text analysis. We use the below formula to

compute the cosine similarity.

Similarity = (A.B) / (||A||.||B||)

where A and B are vectors:

 A.B is dot product of A and B: It is computed as sum of element-wise product of A and

B.

 ||A|| is L2 norm of A: It is computed as square root of the sum of squares of elements of

the vector A.

Example 1:

import required libraries

import numpy as np

from numpy.linalg import norm

define two lists or array

A = np.array([2,1,2,3,2,9])

B = np.array([3,4,2,4,5,5])

print("A:", A)

print("B:", B)

compute cosine similarity

cosine = np.dot(A,B)/(norm(A)*norm(B))

print("Cosine Similarity:", cosine)

112

WISE III B.Tech I Sem DWDM Lab Manual R20

Output:

b) Demonstrate the following Similarity and Dissimilarity Measures using python FOR

Jaccard Similarity

The Jaccard similarity (also known as Jaccard similarity coefficient, or Jaccard index) is a

statistic used to measure similarities between two sets.

Its use is further extended to measure similarities between two objects, for example two

text files. In Python programming, Jaccard similarity is mainly used to measure

similarities between two sets or between two asymmetric binary vectors.

Mathematically, the calculation of Jaccard similarity is simply taking the ratio of set

intersection over set union.

Consider two sets A and B:

Then their Jaccard similarity (or Jaccard index) is given by:

J=|A∩B||A𝖴B|=|A∩B||A|+|B|–|A𝖴B|

Let’s break down this formula into two components:

1. Nominator

The nominator is effectively the set intersection between A and B, shown by the yellow

area in the infographic below:

2. Denominator

The denominator is effectively the set union of A and B, shown by the yellow area in the

infographic below:

https://pyshark.com/everything-about-python-set-data-structure/
https://amzn.to/3vnkzN2
https://pyshark.com/python-set-operations/#python-set-intersection
https://pyshark.com/python-set-operations/#python-set-union

113

WISE III B.Tech I Sem DWDM Lab Manual R20

Using the formula of Jaccard similarity, we can see that the similarity statistic is simply

the ratio of the above two visualizations, where:

 If both sets are identical, for example A=1,2,3 and B=1,2,3, then their Jaccard

similarity = 1.

 If sets A and B don’t have common elements, for example, say A=1,2,3 and B=4,5,6,

then their Jaccard similarity = 0.

 If sets sets A and B have some common elements, for example, A=1,2,3 and B=3,4,5,

then their Jaccard similarity is some value on the interval: 0≤J(A,B)≤1.

Calculate Jaccard similarity

Consider two sets:

 A = {1, 2, 3, 5, 7}

 B = {1, 2, 4, 8, 9}

Or visually:

Step 1:

As the first step, we will need to find the set intersection between A and B:

In this case:

A∩B={1,2}

Step 2:

The second step is to find the set union of A and B:

In this case:

A𝖴B={1,2,3,5,7,4,8,9}

Step 3:

https://pyshark.com/python-set-operations/#python-set-intersection
https://pyshark.com/python-set-operations/#python-set-union

114

WISE III B.Tech I Sem DWDM Lab Manual R20

And the final step is to take the ratio of sizes of intersection and union:

J=|A∩B||A𝖴B|=28=0.25

What is Jaccard distance

Unlike the Jaccard similarity (Jaccard index), the Jaccard distance is a measure of

dissimilarity between two sets.

Mathematically, the calculation of Jaccard distance is the ratio of difference between set

union and set intersection over set union.

Consider two sets A and B:

Then their Jaccard distance is given by:

dJ=|A𝖴B|–|A∩B||A𝖴B|=1–J(A,B)

Let’s break down this formula into two components:

1. Nominator

The nominator can be also written as:

|A𝖴B|–|A∩B|=(A∖B)𝖴(B∖A)=A𝗈B

which is effectively the set symmetric difference between A and B, shown by the yellow

area in the infographic below:

2. Denominator

The denominator is effectively the set union of A and B, shown by the yellow area in the

infographic below:

Using the formula of Jaccard distance, we can see that the dissimilarity statistic is simply

the ratio of the above two visualizations, where:

 If both sets are identical, for example A=1,2,3 and B=1,2,3, then their Jaccard distance

= 0.

 If sets A and B don’t have common elements, for example, say A=1,2,3 and B=4,5,6,

then their Jaccard distance = 1.

 If sets sets A and B have some common elements, for example, A=1,2,3 and B=3,4,5,

then their Jaccard distance is some value on the interval: 0≤dJ(A,B)≤1.

https://pyshark.com/everything-about-python-set-data-structure/
https://amzn.to/3vnkzN2
https://pyshark.com/python-set-operations/#python-set-intersection
https://pyshark.com/python-set-operations/#python-set-union

115

WISE III B.Tech I Sem DWDM Lab Manual R20

Calculate Jaccard distance

Consider two sets:

 A = {1, 2, 3, 5, 7}

 B = {1, 2, 4, 8, 9}

Or visually:

Step 1:

As the first step, we will need to find the set symmetric difference between A and B:

In this case:

|A𝖴B|–|A∩B|=(A∖B)𝖴(B∖A)=A𝗈B={3,7,5,4,8,9}

Step 2:

The second step is to find the set union of A and B:

In this case:

A𝖴B={1,2,3,5,7,4,8,9}

Step 3:

And the final step is to take the ratio of sizes of symmetric difference and union:

dJ=|A𝖴B|–|A∩B||A𝖴B|=68=0.75

Similarity and distance of asymmetric binary attributes

In this section we will look into a more specific application of Jaccard similarity and

Jaccard distance. More specifically, their application to asymmetric binary attributes.

From the naming of it, we can already guess what a binary attribute is. It’s an attribute

that has only two states, and those two states are:

https://pyshark.com/python-set-operations/#python-set-intersection
https://pyshark.com/python-set-operations/#python-set-union
https://www.sciencedirect.com/topics/computer-science/binary-attribute

116

WISE III B.Tech I Sem DWDM Lab Manual R20

 0, meaning an attribute is not present

 1, meaning an attribute is present

The asymmetry comes from the point that if both attributes are present (both equal to 1), it

is considered more important, than if both attributes weren’t present (both equal to 0).

Suppose we have two vectors, A and B, each with n binary attributes.

In this case, the Jaccard similarity (index) can be calculated as:

J=M11M01+M10+M11

and Jaccard distance can be calculated as:

dJ=M01+M10M01+M10+M11=1−J

where:

 M11 is the total numbers of attributes, for which both A and B have 1

 M01 is the total numbers of attributes, for which A has 0 and B has 1

 M10 is the total numbers of attributes, for which A has 1 and B has 0

 M00 is the total numbers of attributes, for which both A and B have 0

and:

M11+M01+M10+M00=n

Example

To explain this in more simple terms, consider the example that can be used for market

basket analysis.

You operate a store that has 6 products (attributes) and 2 customers (objects), and also

keep track of which customer bought which item. You know that:

 Customer A bought: apple, milk coffee

 Customer B bought: eggs, milk, coffee

As you can already imagine, we can construct the following matrix:

 Apple Tomato Eggs Milk Coffee Sugar

A 1 0 0 1 1 1

B 0 0 1 1 1 0

https://pyshark.com/market-basket-analysis-using-association-rule-mining-in-python/
https://pyshark.com/market-basket-analysis-using-association-rule-mining-in-python/

117

WISE III B.Tech I Sem DWDM Lab Manual R20

Where the binary attribute for each customer is indicating if customer purchased (1) or

didn’t purchase (0) a particular product.

The question is to find the Jaccard similarity and Jaccard distance for these two

customers.

Step 1:

We will first need to find the total number for attributes for each M:

 Count Explanation

M11 2 Both customers bought coffee and milk

M01 1 Customer A didn’t buy eggs, whereas Customer B bought eggs

M10

2

Customer B didn’t buy apple and sugar, whereas Customer 1 bought apple

and sugar

M00 1 Neither of customers bought tomato

We can validate the groups by summing up the counts. it should be equal to 6 which is

the n number of attributes (products):

M11+M01+M10+M00=2+1+2+1=6

Step 2:

Since we have all the required inputs, we can now calculate the Jaccard similarity:

J=M11M01+M10+M11=21+2+2=25=0.4

And Jaccard distance:

dJ=M01+M10M01+M10+M11=1+21+2+2=35=0.6

Calculate Jaccard similarity in Python

In this section we will use the same sets as we defined in the one of the first sections:

 A = {1, 2, 3, 5, 7}

 B = {1, 2, 4, 8, 9}

We begin by defining them in Python:

https://pyshark.com/jaccard-similarity-and-jaccard-distance-in-python/#calculate-jaccard-similarity

118

WISE III B.Tech I Sem DWDM Lab Manual R20

Python
Copy

As the next step we will construct a function that takes set A and set B as parameters and

then calculates the Jaccard similarity using set operations and returns it:

Python

Copy

Then test our function:

Python

Copy

And you should get:

which is exactly the same as the statistic we calculated manually.

Calculate Jaccard distance in Python

In this section we continue working with the same sets (A and B) as in the previous

section:

def jaccard_similarity(A, B):

#Find intersection of two sets

nominator = A.intersection(B)

#Find union of two sets

denominator = A.union(B)

#Take the ratio of sizes

similarity = len(nominator)/len(denominator)

return similarity

A = {1, 2, 3, 5, 7}

B = {1, 2, 4, 8, 9}

similarity = jaccard_similarity(A, B)

print(similarity)

0.25

https://pyshark.com/python-set-operations/

119

WISE III B.Tech I Sem DWDM Lab Manual R20

 A = {1, 2, 3, 5, 7}

 B = {1, 2, 4, 8, 9}

We begin by defining them in Python:

Python

Copy

As the next step we will construct a function that takes set A and set B as parameters and

then calculates the Jaccard similarity using set operations and returns it:

Python
Copy

Then test our function:

Python

Copy

And you should get:

which is exactly the same as the statistic we calculated manually

A = {1, 2, 3, 5, 7}

B = {1, 2, 4, 8, 9}

def jaccard_distance(A, B):

#Find symmetric difference of two sets

nominator = A.symmetric_difference(B)

#Find union of two sets

denominator = A.union(B)

#Take the ratio of sizes

distance = len(nominator)/len(denominator)

return distance

distance = jaccard_distance(A, B)

distance = jaccard_distance(A, B)

print(distance)

0.75

https://pyshark.com/python-set-operations/

120

WISE III B.Tech I Sem DWDM Lab Manual R20

Calculate similarity and distance of asymmetric binary attributes in Python

We begin by importing the required dependencies:

Python

Copy

Using the table we used in the theory section:

 Apple Tomato Eggs Milk Coffee Sugar

A 1 0 0 1 1 1

B 0 0 1 1 1 0

we can create the required binary vectors:

Python

Copy

and then use the libraries’ function to calculate the Jaccard similarity and Jaccard

distance:

Python

Copy

And you should get:

import numpy as np

from scipy.spatial.distance import jaccard

from sklearn.metrics import jaccard_score

A = np.array([1,0,0,1,1,1])

B = np.array([0,0,1,1,1,0])

similarity = jaccard_score(A, B)

distance = jaccard(A, B)

print(f'Jaccard similarity is equal to: {similarity}')

print(f'Jaccard distance is equal to: {distance}')

Jaccard similarity is equal to: 0.4

https://pyshark.com/jaccard-similarity-and-jaccard-distance-in-python/#similarity-and-distance-of-asymmetric-binary-vectors

121

WISE III B.Tech I Sem DWDM Lab Manual R20

which is exactly the same as the statistic we calculated manually.

c) Demonstrate the following Similarity and Dissimilarity Measures using python for

EUCLIDEAN DISTANCE.

Jaccard distance is equal to: 0.6

Python code to find Euclidean distance

using linalg.norm()

Import NumPy Library

import numpy as np

initializing points in

numpy arrays

point1 = np.array((4, 4, 2))

point2 = np.array((1, 2, 1))

122

WISE III B.Tech I Sem DWDM Lab Manual R20

Output

3.7416573867739413

d) Demonstrate the following Similarity and Dissimilarity Measures using python for

Manhattan Distance.

00# calculate Euclidean distance

using linalg.norm() method

dist = np.linalg.norm(point1 - point2)

printing Euclidean distance

print(dist)

from math import sqrt

#create function to calculate Manhattan distance

def manhattan(a, b):

return sum(abs(val1-val2) for val1, val2 in zip(a,b))

#define vectors

A = [2, 4, 4, 6]

B = [5, 5, 7, 8]

#calculate Manhattan distance between vectors

manhattan(A, B)

123

WISE III B.Tech I Sem DWDM Lab Manual R20

The Manhattan distance between these two vectors turns out to be 9.

We can confirm this is correct by quickly calculating the Manhattan distance by hand:

Σ|Ai – Bi| = |2-5| + |4-5| + |4-7| + |6-8| = 3 + 1 + 3 + 2 = 9.

9

124

WISE III B.Tech I Sem DWDM Lab Manual R20

import numpy as np

import matplotlib.pyplot as plt

def estimate_coef(x, y):

number of observations/points

n = np.size(x)

mean of x and y vector

m_x = np.mean(x)

m_y = np.mean(y)

calculating cross-deviation and deviation about x

SS_xy = np.sum(y*x) - n*m_y*m_x

SS_xx = np.sum(x*x) - n*m_x*m_x

calculating regression coefficients

b_1 = SS_xy / SS_xx

b_0 = m_y - b_1*m_x

return (b_0, b_1)

def plot_regression_line(x, y, b):

plotting the actual points as scatter plot

plt.scatter(x, y, color = "m",

marker = "o", s = 30)

predicted response vector

y_pred = b[0] + b[1]*x

plotting the regression line

plt.plot(x, y_pred, color = "g")

putting labels

plt.xlabel('x')

plt.ylabel('y')

function to show plot

plt.show()

def main():

observations / data

x = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

y = np.array([1, 3, 2, 5, 7, 8, 8, 9, 10, 12])

estimating coefficients

b = estimate_coef(x, y)

print("Estimated coefficients:\nb_0 = {} \

\nb_1 = {}".format(b[0], b[1]))

plotting regression line

plot_regression_line(x, y, b)

if __name == " main ":

main()

125

WISE III B.Tech I Sem DWDM Lab Manual R20

output:

Estimated coefficients:

b_0 = -0.0586206896552

b_1 = 1.45747126437

126

WISE III B.Tech I Sem DWDM Lab Manual R20

Experiment-13:

13.Visualize the data sets using matplotlib in python.(Histogram, Box Plot, Bar chart, Pie-

Chart)

Code for pie chart:

import matplotlib.pyplot as plt

initializing the data

x = [10, 20, 30, 40]

y = [20, 25, 35, 55]

plotting the data

plt.plot(x, y)

plt.show()

Output:

127

WISE III B.Tech I Sem DWDM Lab Manual R20

Steps to plot a histogram in Python using Matplotlib

Step 1: Install the Matplotlib package

Install the Matplotlib package using the following command (under Windows):

Step 2: Collect the data for the histogram

For example, let’s say that you have the following data about the age of 100 individuals:

Age

1,1,2,3,3,5,7,8,9,10,

10,11,11,13,13,15,16,17,18,18,

18,19,20,21,21,23,24,24,25,25,

25,25,26,26,26,27,27,27,27,27,

29,30,30,31,33,34,34,34,35,36,

36,37,37,38,38,39,40,41,41,42,

43,44,45,45,46,47,48,48,49,50,

51,52,53,54,55,55,56,57,58,60,

61,63,64,65,66,68,70,71,72,74,

75,77,81,83,84,87,89,90,90,91

Step 3: Determine the number of bins

set the number of bins to 10. At the end of this guide, I’ll show you another way to derive the bins.

Step 4: Plot the histogram in Python using matplotlib

to plot the histogram based on the template that you saw at the beginning of this guide:

pip install matplotlib

import matplotlib.pyplot as plt

x = [value1, value2, value3, ...]

plt.hist(x, bins = number of bins)

plt.show()And for our example, this is the complete Python code after applying the above template:

128

WISE III B.Tech I Sem DWDM Lab Manual R20

import matplotlib.pyplot as plt

x = [1,1,2,3,3,5,7,8,9,10,

10,11,11,13,13,15,16,17,18,18,

18,19,20,21,21,23,24,24,25,25,

25,25,26,26,26,27,27,27,27,27,

29,30,30,31,33,34,34,34,35,36,

36,37,37,38,38,39,40,41,41,42,

43,44,45,45,46,47,48,48,49,50,

51,52,53,54,55,55,56,57,58,60,

61,63,64,65,66,68,70,71,72,74,

75,77,81,83,84,87,89,90,90,91

]

plt.hist(x, bins=10)

plt.show()

129

WISE III B.Tech I Sem DWDM Lab Manual R20

	Experiment-1:
	A. Build Data Warehouse/Data Mart (using open source tools like Pentaho Data Integration Tool, Pentaho Business Analytics; or other data warehouse tools like Microsoft-SSIS,Informatica,Business Objects,etc.,)
	Create the source tables and populate them
	And here is the script to create and populate them:
	-- Create customer table
	create table Customer
	-- Create Van table
	create table Van
	-- Populate Van table
	-- Create Hire table
	create table Hire
	-- Populate Hire table

	Create the Data Warehouse
	First I’ll show you how it looks when it’s done:
	And then we do it. This is the script to create and populate those dim and fact tables:
	-- Create Date Dimension
	create table DimDate
	-- Populate Date Dimension
	-- Create Customer dimension
	create table DimCustomer
	-- Create Van dimension
	create table DimVan
	-- Create Hire fact table
	create table FactHire
	A.(ii). Design multi-demesional data models namely Star, Snowflake and Fact Constellation schemas for any one enterprise (ex. Banking,Insurance, Finance, Healthcare, manufacturing, Automobiles,sales etc).
	StarSchema
	SnowflakeSchema
	Fact Constellation Schema
	A.(iii) Write ETL scripts and implement using data warehouse tools. Ans:
	Abbreviations
	ETL Process:
	ETL method – nothin’ but SQL
	A.(iv) Perform Various OLAP operations such slice, dice, roll up, drill up and pivot. Ans: OLAPOPERATIONS

	Experiment-2:
	B.(i) Downloading and/or installation of WEKA data mining toolkit. Ans: Install Steps for WEKA a Data Mining Tool
	B.(ii)Understand the features of WEKA tool kit such as Explorer, Knowledge flow interface, Experimenter, command-line interface.
	1. Explorer
	Section Tabs
	WEKA’s core algorithms.
	Commands
	Invocation
	Command redirection
	Command completion
	B.(iii)Navigate the options available in the WEKA(ex.select attributes panel,preprocess panel,classify panel,cluster panel,associate panel and visualize)
	A. (iv) Study the ARFF file format
	Weka’s “core converters”. The following formats are currently supported:
	Overview
	1. Title: Iris Plants Database
	@RELATION iris
	@DATA
	The ARFF Header Section
	The @relation Declaration
	The @attribute Declarations
	The format for the @attribute statement is:
	The <datatype> can be any of the four types supported by Weka:
	Numeric attributes
	Nominal attributes
	String attributes
	Date attributes
	Relational attributes
	The ARFF Data Section
	The @data Declaration
	The instance data
	Missing values are represented by a single question mark, as in:
	AG5, ’Encyclopedias and dictionaries.;Twentieth century.’ AS262, ’Science -- Soviet Union -- History.’ AE5, ’Encyclopedias and dictionaries.’
	B.(v) Explore the available data sets in WEKA.
	B. (vi) Load a data set (ex.Weather dataset,Iris dataset,etc.)
	B. (vii) Load each dataset and observe the following:
	B. (vii.ii) Number of records in each dataset.
	B. (vii.iv) Plot Histogram
	B. (vii.v) Determine the number of records for each class
	B. (vii.vi) Visualize the data in various dimensions

	3. Perform data preprocessing tasks and Demonstrate performing association rule mining on data sets
	A. Explore various options in Weka for Preprocessing data and apply (like Discretization Filters, Resample filter, etc.) n each dataset.
	Working With Attributes
	PREPROCESSING
	Working with Filters:-
	The GenericObjectEditor Dialog Box
	Applying Filters
	Dataset labor.arff
	B. Load each dataset into Weka and run Aprior algorithm with different support and confidence values. Study the rules generated.
	Support and Confidence values:
	C. Apply different discretization filters on numerical attributes and run the Aprior association rule algorithm. Study the rules generated. Derive interesting insights and observe the effect of discretization in the rule generation process.
	Test Options
	The Class Attribute
	Training a Classifier
	A. Load each dataset into Weka and run id3, j48 classification algorithm, study the classifier output. Compute entropy values, Kappa ststistic.
	Output:
	Kappa statistic 0.97
	Split into several sections:
	chose “Output source code” in the “More options” dialog.
	Ans:
	Points to remember −
	Points to remember − (1)
	Output: (1)
	TP Rate FP Rate Precision Recall F-Measure ROC Area Class
	C. Load each dataset into Weka and perform Naïve-bayes classification and k-Nearest Neighbor classification, Interpret the results obtained.
	Output: Naïve Bayes
	Output: KNN (IBK)
	D. Plot RoC Curves.
	E. Compare classification results of ID3,J48, Naïve-Bayes and k-NN classifiers for each dataset , and reduce which classifier is performing best and poor for each dataset and justify.

	Experiment:5
	Cluster Modes
	Ignoring Attributes
	Working with Filters
	Learning Clusters
	A.Load each dataset into Weka and run simple k-means clustering algorithm with different values of k(number of desired clusters). Study the clusters formed. Observe the sum of squared errors and centroids, and derive insights.
	Output:
	B.Explore other clustering techniques available in Weka.
	C.Explore visualization features of weka to visualize the clusters. Derive interesting insights and explain.

	algorithm.
	Step 2: Training apriori model
	Experiment-8:
	Experiment-9:
	import matplotlib.pyplot as plt import pandas as pd
	dataset = pd.read_csv('Social_Network_Ads.csv')
	# Splitting the dataset into the Training set and Test set from sklearn.model_selection import train_test_split
	# Feature Scaling
	X_train = sc.fit_transform(X_train) X_test = sc.transform(X_test)
	classifier.fit(X_train, y_train)
	# Making the Confusion Matrix

	Experiment-10:
	10. Implement a java program to perform Apriori algorithm.
	Code:
	import matplotlib.pyplot as plt import seaborn as sns
	from mlxtend.frequent_patterns import apriori
	import networkx as nx

	Experiment-11:
	11. Write a program of cluster analysis using simple k-means algorithm Python Programming language.
	import numpy as np import pandas as pd
	from sklearn.datasets.samples_generator import make_blobs from sklearn.cluster import KMeans
	wcss = []for i in range(1, 11):
	wcss.append(kmeans.inertia_) plt.plot(range(1, 11), wcss) plt.title('Elbow Method') plt.xlabel('Number of clusters') plt.ylabel('WCSS')
	kmeans = KMeans(n_clusters=4, init='k-means++', max_iter=300, n_init=10, random_state=0) pred_y = kmeans.fit_predict(X)plt.scatter(X[:,0], X[:,1])

	12. Write a program to compute/display dissimilarity matrix using python.
	a) Demonstrate the following Similarity and Dissimilarity Measures using python FOR Cosine Similarity.
	Similarity = (A.B) / (||A||.||B||) where A and B are vectors:

	Example 1:
	# import required libraries import numpy as np
	# define two lists or array A = np.array([2,1,2,3,2,9])
	print("A:", A)
	# compute cosine similarity

	Output:
	b) Demonstrate the following Similarity and Dissimilarity Measures using python FOR Jaccard Similarity
	Its use is further extended to measure similarities between two objects, for example two text files. In Python programming, Jaccard similarity is mainly used to measure similarities between two sets or between two asymmetric binary vectors.
	Consider two sets A and B:
	J=|A∩B||A𝖴B|=|A∩B||A|+|B|–|A𝖴B|

	1. Nominator
	2. Denominator
	The denominator is effectively the set union of A and B, shown by the yellow area in the infographic below:
	 If both sets are identical, for example A=1,2,3 and B=1,2,3, then their Jaccard similarity = 1.

	Calculate Jaccard similarity
	Consider two sets:
	 B = {1, 2, 4, 8, 9}

	Step 1:
	As the first step, we will need to find the set intersection between A and B:

	Step 2:
	The second step is to find the set union of A and B:

	Step 3:
	And the final step is to take the ratio of sizes of intersection and union:

	What is Jaccard distance
	Unlike the Jaccard similarity (Jaccard index), the Jaccard distance is a measure of dissimilarity between two sets.
	Consider two sets A and B:

	1. Nominator (1)
	The nominator can be also written as:

	2. Denominator (1)
	The denominator is effectively the set union of A and B, shown by the yellow area in the infographic below:
	 If both sets are identical, for example A=1,2,3 and B=1,2,3, then their Jaccard distance
	 If sets A and B don’t have common elements, for example, say A=1,2,3 and B=4,5,6, then their Jaccard distance = 1.

	Calculate Jaccard distance
	Consider two sets:
	 B = {1, 2, 4, 8, 9}

	Step 1: (1)
	As the first step, we will need to find the set symmetric difference between A and B:

	Step 2: (1)
	The second step is to find the set union of A and B:

	Step 3: (1)
	And the final step is to take the ratio of sizes of symmetric difference and union:

	Similarity and distance of asymmetric binary attributes
	In this section we will look into a more specific application of Jaccard similarity and Jaccard distance. More specifically, their application to asymmetric binary attributes.
	 0, meaning an attribute is not present
	The asymmetry comes from the point that if both attributes are present (both equal to 1), it is considered more important, than if both attributes weren’t present (both equal to 0).
	J=M11M01+M10+M11
	dJ=M01+M10M01+M10+M11=1−J
	 M11 is the total numbers of attributes, for which both A and B have 1
	 M10 is the total numbers of attributes, for which A has 1 and B has 0

	Example
	To explain this in more simple terms, consider the example that can be used for market basket analysis.
	 Customer A bought: apple, milk coffee
	As you can already imagine, we can construct the following matrix:

	Step 1: (2)
	We will first need to find the total number for attributes for each M:

	Step 2: (2)
	Since we have all the required inputs, we can now calculate the Jaccard similarity:
	And Jaccard distance:

	Calculate Jaccard similarity in Python
	In this section we will use the same sets as we defined in the one of the first sections:
	 B = {1, 2, 4, 8, 9}
	Python
	As the next step we will construct a function that takes set A and set B as parameters and then calculates the Jaccard similarity using set operations and returns it:
	Copy
	Python (1)
	And you should get:

	Calculate Jaccard distance in Python
	In this section we continue working with the same sets (A and B) as in the previous section:
	 B = {1, 2, 4, 8, 9}
	Python
	As the next step we will construct a function that takes set A and set B as parameters and then calculates the Jaccard similarity using set operations and returns it:
	Copy
	Python (1)
	And you should get:

	Calculate similarity and distance of asymmetric binary attributes in Python
	We begin by importing the required dependencies:
	Copy
	we can create the required binary vectors:
	Copy (1)
	Python
	And you should get:

	Output
	3.7416573867739413
	The Manhattan distance between these two vectors turns out to be 9.
	output:

	Experiment-13:
	Code for pie chart:
	Step 1: Install the Matplotlib package
	Step 2: Collect the data for the histogram
	Step 3: Determine the number of bins
	Step 4: Plot the histogram in Python using matplotlib

