
II BTECH ISEM R20

WISE Page 1

List of experiments :

S.No Name of the Experiment

1.

a) Study of Unix/Linux general purpose utility command list

man,who,cat, cd, cp, ps, ls, mv, rm, mkdir, rmdir, echo, more, date, time, kill, history,

chmod, chown, finger, pwd, cal, logout, shutdown.

b) Study of vi editor.

c) Study of Bash shell, Bourne shell and C shell in Unix/Linux operating system.

d) Study of Unix/Linux file system (tree structure).

e) Study of .bashrc, /etc/bashrc and Environment

2.

Multiprogramming-Memory management- Implementation of fork (), wait (), exec() and

exit (), System calls

3. Write a C program that makes a copy of a file using standard I/O, and system calls

4.

Write a C program to emulate the UNIX ls –l command

5.

Simulate the following CPU scheduling algorithms

a) Round Robin b) SJF c) FCFS d) Priority

 6.

Simulate the following

 a) Multiprogramming with a fixed number of tasks (MFT)

b) Multiprogramming with a variable number of tasks (MVT)

7.

Write a C program that illustrates how to execute two commands concurrently with a

command pipe.

Ex: - ls –l | sort

 8. Simulate Bankers Algorithm for Dead Lock Avoidance

9..

Simulate Bankers Algorithm for Dead Lock Prevention.

 10. Write a C program that illustrates two processes communicating using shared memory

 11.

Simulate the following page replacement algorithms.

 a) FIFO b) LRU c) LFU

II BTECH ISEM R20

WISE Page 2

12. Write a C program to simulate producer and consumer problem using semaphores

13.

Simulate the following File allocation strategies

 a) Sequenced b) Indexed c) Linked

.

 14. Write C program to create a thread using pthreads library and let it run its function

 15. Write a C program to illustrate concurrent execution of threads using pthreads library.

II BTECH ISEM R20

WISE Page 3

EXERCISE-1

1. a) Study of Unix/Linux general purpose utility command list

man, who, cat, cd, cp, ps, ls, mv, rm, mkdir, rmdir, echo, more, date, time, kill, history, chmod,

chown, finger, pwd, cal, logout, shutdown.

(i)man

Short for "manual," man allows a user to format and display the user manual built into Linux

distributions, which documents commands and other aspects of the system.

Syntax

man [option(s)] keyword(s)

WWW.VIDYARTHIPLUS.COM

Example

man ls

(ii)who:

 identifies the users currently logged in

The "who" command lets you display the users that are currently logged into your UNIX computer

system. The following information is displayed: login name, workstation name, date

and time of login. Entering who am i or who am I displays your login name, workstation name,

date and time you logged in.

Synopsys

who [OPTION]... [FILE | ARG1 ARG2]

Example

who am i

(iii) cat:

 concatenate or display files

Synopsys

cat [- q] [- s] [- S] [- u] [- n[- b]] [- v [- [- t]] [- | File ...]

The cat command reads each File parameter in sequence and writes it to standard output. If you

do not specify a file name, the cat command reads from standard input. You can also specify a

file name of – (minus) for standard input.

Exit Status

This command returns the following exit values:

0 All input files were output successfully.

>0 An error occurred.

Examples

1. To display a file at the workstation, enter:

cat notes

2. To concatenate several files, enter:

cat section1.1 section1.2 section1.3 >section1

3. To suppress error messages about files that do not exist, enter:

II BTECH ISEM R20

WISE Page 4

cat -q section2.1 section2.2 section2.3 >section2

4. To append one file to the end of another, enter:

cat section1.4 >>section1

The >> appends a copy of section1.4 to the end of section1. If

you want to replace the file, use the >.YARTHIPLUS.COM

5. To add text to the end of a file, enter:

cat >>notes

Get milk on the way home

Ctrl-D

6. To concatenate several files with text entered from the keyboard,

cat section3.1 - section3.3 >section3

7. To concatenate several files with output from another command,

li | cat section4.1 - >section4

(iv) cd:

The cd command, which stands for "change directory", changes the shell's current working

directory.

Syntax

cd directory

Example

cd new

(v) cp:

Copy files and directories.

Syantax:

cp [option] source destination

Example:

cp file1 file2

(vi) ps:

Report a snapshot of the current processes.

Syatax:

ps [options]

(vii) ls

List directory contents

Syntax:

ls [option]

(viii) mv

Move or rename files

Syantax

mv [option] soure dest

II BTECH ISEM R20

WISE Page 5

Example:

mv file1 file2

(ix) rm

Remove files or directories

Syantax:

rm [option] filename

Example

rm file1

cat file1

cat: file1:No such file or directory.

(x) mkdir

Make directories

Syantax

mkdir [option] directoryname

Example:

mkdir cse

cd cse

~/cse$_

(xi) rmdir

Remove empty directories

Syntax:

rmdir [option] directoryname

Example:

rmdir cse

cd cse

bash:cd:cse: No such file or directory

(xii) echo

Display a line of text

Syntax:

echo [short_option] String

Example

echo “This is CSE World”

This is CSE World

(xiii) more

 File perusal filter or crt viewing

Syntax:

more [-difpcsu] [-num] [+/pattern] [+linenumber]

Example

cat file1

II BTECH ISEM R20

WISE Page 6

BVCITS

This is CSE class

more +2 file1

This is CSE class

(xiv) date

Print or set the system date or time.

Syntax:

date [option] [format]

Example

date

Mon Jan 1 00:30:20 PST 2001

(xv) time

Run programs and summarize system resource usage.

Syntax:

time [format] [file]

(xvi) kill

Send a signal to a process

Syntax:

kill [-signal | -s signal] pid…

Example

Kill -1

(xvii) history

GNU history library.

Example:

history

vi 4ex.sh

sh 4b.sh

man cat…

(xviii) chmod

Change file mode

Syntax:

chmod [option] mode file

Example

Chmod 652 file1

-rw-r-x-w- bvcits bvcits 21 2001-01-01 00:37 file1

(xix) chown

Change the file owner and group

Syntax:

chown [option] [owner] [:[group]] file

II BTECH ISEM R20

WISE Page 7

Example

chown cse bvc

(xx) finger

The finger display information about the system user

Syntax:

Finger [-l] [-m] [-p] [-s] [username]

Example

finger abc

login:abc name:(null)

directory: /home/abc shell: /bin/bash

on since Mon Nov 1 18:45 (IST)

(xxi) pwd

Print name of the current working directory

Syntax:

pwd [option]

Example

pwd

/home/bvcits

(xxii)cal

Cal, ncal- displays a calendar and the date of easter

Syntax:

cal [-a number] [-b numer] [[mont] year]

Example

June 2018

Su Mo Tu We Th Fr Sa

 1 2 3 4 5

6 7 8 9 10 11 12

13 14 15 16 17 18 19

20 21 22 23 24 25 26

27 28 29 30 31

(xxiii) logout

Login,logout-write utmp and wtmp entries

Syntax:

#include<utmp.h>

Void login(const struct utmp *ut);

Int logout(const char *utline);

Link with –lutil

II BTECH ISEM R20

WISE Page 8

(xxiv) shutdown

Bring the system down

Syntax:

Shutdown [option] time[message]

b) Study of vi editor.

How to Use the vi Editor

The vi editor is available on almost all Unix systems. vi can be used from any type of terminal

because it does not depend on arrow keys and function keys--it uses the standard alphabetic keys

for commands.

vi (pronounced "vee-eye") is short for "vi"sual editor. It displays a window into the file being

edited that shows 24 lines of text. vi is a text editor, not a "what you see is what you get" word

processor. vi lets you add, change, and delete text, but does not provide such formatting

capabilities as centering lines or indenting paragraphs.

This help note explains the basics of vi:WWW.VIDYARTHIPLUS.COM

===== Starting vi =====

You may use vi to open an already existing file by typing

vi filename

where "filename" is the name of the existing file. If the file is not in your current directory, you

must use the full pathname.

Or you may create a new file by typing vi newname

where "newname" is the name you wish to give the new file.

To open a new file called "testvi," enter vi testvi

On-screen, you will see blank lines, each with a tilde (~) at the left, and a line at the bottom

giving the name and status of the new file:

~

~

"testvi" [New file]

===== vi Modes =====

vi has two modes:

In command mode, the letters of the keyboard perform editing functions (like moving the cursor,

deleting text, etc.). To enter command mode, press the escape &<Esc> key.

In insert mode, the letters you type form words and sentences. Unlike many word processors, vi

starts up in command mode.

===== Entering Text =====

In order to begin entering text in this empty file, you must change from command mode to insert

mode. To do this, type ‘i'
Nothing appears to change, but you are now in insert mode and can begin typing text. In

general, vi's commands do not display on the screen and do not require the Return key to be

pressed.

II BTECH ISEM R20

WISE Page 9

Type a few short lines and press &<Return> at the end of each line. If you type a long line, you

will notice the vi does not word wrap, it merely breaks the line unceremoniously at the edge of

the screen. If you make a mistake, pressing <Backspace> or <Delete> may remove the error,

depending on your terminal type.

===== Moving the Cursor =====

To move the cursor to another position, you must be in command mode. If you have just

finished typing text, you are still in insert mode. Go back to command mode by pressing <Esc>.

If you are not sure which mode you are in, press <Esc> once or twice until you hear a beep.

When you hear the beep, you are in command mode.

The cursor is controlled with four keys: h, j, k, l.

Key Cursor Movement

h left one space

j down one line

k up one line

l right one space

When you have gone as far as possible in one direction, the cursor stops moving and you hear a

beep. For example, you cannot use l to move right and wrap around to the next line, you must

use j to move down a line. See the section entitled "Moving Around in a File" for ways to move

more quickly through a file.

Basic Editing

Editing commands require that you be command mode. Many of the editing commands have a

different function depending on whether they are typed as upper- or lowercase. Often, editing

commands can be preceded by a number to indicate a repetition of the command.

Deleting Characters

To delete a character from a file, move the cursor until it is on the incorrect letter, then type ‘x’
The character under the cursor disappears. To remove four characters (the one under the cursor

and the next three) type 4x

To delete the character before the cursor, type X (uppercase)

Deleting Words

To delete a word, move the cursor to the first letter of the word, and type dw

This command deletes the word and the space following it. To delete three words type 3dw

Deleting Lines

To delete a whole line, type dd

The cursor does not have to be at the beginning of the line. Typing dd deletes the entire line

containing the cursor and places the cursor at the start of the next line. To delete two lines, type

2dd. To delete from the cursor position to the end of the line, type D (uppercase)

Replacing Characters

To replace one character with another:WWW.VIDYARTHIPLUS.COM

1. Move the cursor to the character to be replaced.

2. Type r

3. Type the replacement character.

The new character will appear, and you will still be in command mode.

Replacing Words

To replace one word with another, move to the start of the incorrect word and type cw

The last letter of the word to be replaced will turn into a $. You are now in insert mode and may

II BTECH ISEM R20

WISE Page 10

type the replacement. The new text does not need to be the same length as the original.

Press <Esc> to get back to command mode. To replace three words, type 3cw

Replacing Lines

To change text from the cursor position to the end of the line:

1. Type C (uppercase).

2. Type the replacement text.

3. Press <Esc>.

Inserting Text

To insert text in a line:

1. Position the cursor where the new text should go.

2. Type i

3. Enter the new text. The text is inserted BEFORE the cursor.

4. Press <Esc> to get back to command mode.

Appending Text

To add text to the end of a line:

1. Position the cursor on the last letter of the line.

2. Type a

3. Enter the new text. This adds text AFTER the cursor.

4. Press <Esc> to get back to command mode.

Opening a Blank Line

To insert a blank line below the current line, type o (lowercase)

To insert a blank line above the current line, type O (uppercase)

Joining Lines

To join two lines together:

1. Put the cursor on the first line to be joined.

2. Type J

To join three lines together:

1. Put the cursor on the first line to be joined.

2. Type 3J

===== Undoing =====

To undo your most recent edit, type uWWW.VIDYARTHIPLUS.COM

To undo all the edits on a single line, type U (uppercase)

Undoing all edits on a single line only works as long as the cursor stays on that line. Once you

move the cursor off a line, you cannot use U to restore the line.

===== Moving Around in a File =====

There are shortcuts to move more quickly though a file. All these work in command mode.

Key Movement

w forward word by word

b backward word by word

$ to end of line

0 (zero) to beginning of line

H to top line of screen

M to middle line of screen

L to last line of screen

II BTECH ISEM R20

WISE Page 11

G to last line of file

1G to first line of file

<Control>f scroll forward one screen

<Control>b scroll backward one screen

<Control>d scroll down one-half screen

<Control>u scroll up one-half screen

===== Moving by Searching =====

To move quickly by searching for text, while in command mode:

1. Type / (slash).

2. Enter the text to search for.

3. Press <Return>.

The cursor moves to the first occurrence of that text.

To repeat the search in a forward direction, type n

To repeat the search in a backward direction, type N

===== Closing and Saving a File =====

With vi, you edit a copy of the file, rather than the original file. Changes are made to the original

only when you save your edits.

To save the file and quit vi, type ZZWWW.VIDYARTHIPLUS.COM

The vi editor is built on an earlier Unix text editor called ex. ex commands can be used within

vi. ex commands begin with a : (colon) and end with a <Return>. The command is displayed on

the status line as you type. Some ex commands are useful when saving and closing files.

To save the edits you have made, but leave vi running and your file open:

1. Press <Esc>.

2. Type :w

3. Press <Return>.

To quit vi, and discard any changes your have made since last saving:

1. Press <Esc>.

2. Type :q!

3. Press <Return>.

c) Study of Bash shell, Bourne shell and C shell in Unix/Linux operating system.

Types of Shells in Linux

In addition to graphical user interfaces like Gnome, KDE and MATE, the Linux operating

system also offers several shells. These command-line interfaces provide powerful environments

for software development and system maintenance. Though shells have many commands in

common, each type has unique features. Over time, individual programmers come to prefer one

type of shell over another; some develop new, enhanced shells based on previous ones. UNIX

also has an ecosystem of different shells; Linux carries this practice into the open-source

software arena.

The Bourne shell

The Bourne shell, called "sh," is one of the original shells, developed for Unix computers by

Stephen Bourne at AT&T's Bell Labs in 1977. Its long history of use means many software

developers are familiar with it. It offers features such as input and output redirection, shell

scripting with string and integer variables, and condition testing and looping.

II BTECH ISEM R20

WISE Page 12

The Bash shell

The popularity of sh motivated programmers to develop a shell that was compatible with it, but

with several enhancements. Linux systems still offer the sh shell, but "bash" -- the "Bourne-again

Shell," based on sh -- has become the new default standard. One attractive feature of bash is its

ability to run sh shell scripts unchanged. Shell scripts are complex sets of commands that

automate programming and maintenance chores; being able to reuse these scripts saves

programmers time. Conveniences not present with the original Bourne shell include command

completion and a command history.WWW.VIDYARTHIPLUS.COM

C Shell

Developers have written large parts of the Linux operating system in the C and C++ languages.

Using C syntax as a model, Bill Joy at Berkeley University developed the "C-shell," csh, in

1978. Ken Greer, working at Carnegie-Mellon University, took csh concepts a step forward with

a new shell, tcsh, which Linux systems now offer. Tcsh fixed problems in csh and added

command completion, in which the shell makes educated "guesses" as you type, based on your

system's directory structure and files. Tcsh does not run bash scripts, as the two have substantial

differences.

The Korn shell

David Korn developed the Korn shell, or ksh, about the time tcsh was introduced. Ksh is

compatible with sh and bash. Ksh improves on the Bourne shell by adding floating-point

arithmetic, job control, and command aliasing and command completion. AT&T held proprietary

rights to ksh until 2000, when it became open source.

d) Study of Unix/Linux file system (tree structure).

A file system is a logical collection of files on a partition or disk

UNIX uses a hierarchical file system structure, much like an upside-down tree, with root (/) at

the base of the file system and all other directories spreading from there.

A UNIX filesystem is a collection of files and directories that has the following properties −

and a unique identifier, typically called an inode.WWW.VIDYARTHIPLUS.COM

has an inode number of 3. Inode numbers 0 and 1 are not used. File inode numbers can

be seen by specifying the -i option to ls command.

II BTECH ISEM R20

WISE Page 13

The directories have specific purposes and generally hold the same types of information for

easily locating files. Following are the directories that exist on the major versions of Unix −

Directory Description

/ This is the root directory which should contain only the

directories needed at the top level of the file structure.

/bin This is where the executable files are located. They are

available to all user.

/dev These are device drivers.

/etc Supervisor directory commands, configuration files, disk

configuration files, valid user lists, groups, ethernet,

hosts, where to send critical messages

/lib Contains shared library files and sometimes other kernel

related files.

/boot Contains files for booting the system.

/home Contains the home directory for users and other accounts.

/mnt Used to mount other temporary file systems, such as

cdrom and floppy for the CDROM drive and floppy

diskette drive, respectively

/proc Contains all processes marked as a file by process

number or other information that is dynamic to the

system.

/tmp Holds temporary files used between system boots

/usr Used for miscellaneous purposes, or can be used by

many users. Includes administrative commands, shared

files, library files, and others

/var Typically contains variable length files such as log and

print files and any other type of file that may contain a

variable amount of data

/sbin Contains binary (executable) files, usually for system

administration. For example fdisk and ifconfig utlities.

/kernel Contains kernel files

e) Study of .bashrc, /etc/bashrc and Environment variables.

Following is the partial list of important environment variables.

Variable Description

DISPLAY Contains the identifier for the display that X11 programs

should use by default.

HOME Indicates the home directory of the current user: the default

argument for the cd built in command.

IFS Indicates the Internal Field Separator that is used by the

parser for word splitting after expansion.

WWW.VIDYARTHIPLUS.COM

PATH Indicates search path for commands. It is a colon

PWD Indicates the current working directory as set by the cd

II BTECH ISEM R20

WISE Page 14

command.

RANDOM Generates a random integer between 0 and 32,767 each time

it is referenced.

SHLVL Increments by one each time an instance of bash is started.

This variable is useful for determining whether the built

TERM Refers to the display type

TZ Refers to Time zone. It can take values like GMT, AST, etc.

UID Expands to the numeric user ID of the current user,

initialized at shell startup.

EXERCISE-2

2. Write a C program that makes a copy of a file using standard I/O, and system calls.

Program:

#include<fcntl.h>

#include<unistd.h>

int main(int argc, char **argv)

{

 int n,size,fd1,fd2;

 char c;

 fd1 = open(argv[1],O_RDONLY);

 fd2 = open(argv[2],O_WRONLY);

 size = lseek(fd1, -1, SEEK_END);

 n = lseek(fd1, 0, SEEK_SET);

 while(n++ < size)

 {

 read(fd1, &c,1);

 write(fd2, &c,1);

 }

}

Output:

$cat >file1

First UNIX Program

Welcome to Unix

$cat >file2

$cc exe1.c

$./a.out file1 file2

$ cat file2

First UNIX Program

Welcome to Unix

II BTECH ISEM R20

WISE Page 15

EXERCISE-3

3. Write a C program to emulate the UNIX ls –l command.

Program:

#include <unistd.h>

#include <stdio.h>

#include <sys/stat.h>YARTHIPLUS.COM

#include <sys/types.h>

#include <stdlib.h>

int main()

{

 int pid;

pid = fork();

if(pid<0)

{

 printf(“\n Child process creation failed”);

 exit(-1);

 }

 else if(pid == 0)

{

 execlp(“/bin/ls”, “ls”, ‘-l”, NULL);

}

else

{

 wait(NULL);

 printf(“\n child process completed”);

 exit(0);

 }

}

Output:

$cc exe3.c

$./a.out

Total 160

-rw-r—r—1 bvcits bvcits 385 2001-01-01 01:36 155a1

drwxr-xrx1 bvcits bvcits 4096 2001-01-01 00:51 csea

-rw-r—r—1 bvcits bvcits 335 2001-01-01 00:12 exe2.c

-rw-r—r—1 bvcits bvcits 397 2001-01-01 00:23 exe3.c

II BTECH ISEM R20

WISE Page 16

EXERCISE-4

4. Write a C program that illustrates how to execute two commands concurrently with a

command pipe.

Program:

#include<stdio.h>

#include<stdlib.h>

int main(int argc,char *argv[])

{

int fd[2],pid,k;

WWW.VIDYARTHIPLUS.COM

k=pipe(fd);

if(k==-1)

{

perror("pipe");

exit(1);

}

pid=fork();

if(pid==0)

{

close(fd[0]);

dup2(fd[1],1);

close(fd[1]);

execlp(argv[1],argv[1],NULL);

perror("execl");

}

else

{

wait(2);

close(fd[1]);

dup2(fd[0],0);

close(fd[0]);

execlp(argv[2],argv[2],NULL);

perror("execl");

}

}

II BTECH ISEM R20

WISE Page 17

Output:

$cc exe4.c

$./a.out ls sort

a.out

ls_sort.c

named.

pip

EXERCISE-5

Simulate the following CPU scheduling algorithms

a) Round Robin b) SJF c) FCFS d)Priority

AIM: Simulate the following CPU scheduling algorithms

a) ROUND ROBIN:

DESCRIPTION:

 Round Robin is the preemptive process scheduling algorithm.

 Each process is provided a fix time to execute, it is called a quantum.

 Once a process is executed for a given time period, it is preempted and other process

executes for a given time period.

 Context switching is used to save states of preempted processes.

PROGRAM:

/* C Program to implement Round Robin CPU Scheduling Algorithm */

#include<stdio
.h> int main()
{
int count,j,n,time,remain,flag=0,time_quantum;
int
wait_time=0,turnaround_time=0,at[10],bt[10],rt[
10]; printf("Enter Total Process:\t ");
scanf("%d",&
n); remain=n;
for(count=0;count<n;count++)
{
printf("Enter Arrival Time and Burst Time for Process Process Number %d :",count+1);
scanf("%d",&at[count]);
scanf("%d",&bt[count]);

II BTECH ISEM R20

WISE Page 18

rt[count]=bt[count];

}
printf("Enter Time Quantum:\t");
scanf("%d",&time_quantum);
printf("\n\nProcess\t|Turnaround Time|Waiting
Time\n\n"); for(time=0,count=0;remain!=0;)
{
if(rt[count]<=time_quantum && rt[count]>0)

{
time+=rt[cou
nt];
rt[count]=0;
flag=1;

}

else if(rt[count]>0)
{
rt[count]-=time_quantum;
time+=time_quantum;

}
if(rt[count]==0 && flag==1)
{
remain--;
printf("P[%d]\t|\t%d\t|\t%d\n",count+1,time-at[count],time-
at[count]-bt[count]); wait_time+=time-at[count]-bt[count];
turnaround_time+=time-
at[count]; flag=0;

}
if(count==n
-1)
count=0;

else
if(at[count+1]<=tim
e) count++;

else
count=0;

}
printf("\nAverage Waiting Time=
%f\n",wait_time*1.0/n); printf("Avg Turnaround
Time = %f",turnaround_time*1.0/n);
return 0;

}

II BTECH ISEM R20

WISE Page 19

OUTPUT:

Enter Total Process: 4

Enter Arrival Time and Burst Time for Process
Process Number 1 : 0 9

Enter Arrival Time and Burst Time for Process
Process Number 2 : 1 5

Enter Arrival Time and Burst Time for Process
Process Number 3 : 2 3

Enter Arrival Time and Burst Time for Process
Process Number 4 : 3 4

Enter Time Quantum: 5

Proce
ss

Turnaround
Time

Waiting
Time

P[2]

9

4

P[3]

11

8

P[4]

14

10

P[1] 21 12

Average Waiting Time=
8.500000 Avg Turnaround
Time = 13.70000

b) SJF:

DESCRIPTION:

 This is also known as shortest job first, or SJF

 This is a non-preemptive, pre-emptive scheduling algorithm.

 Best approach to minimize waiting time.

 Easy to implement in Batch systems where required CPU time is known in advance.

 Impossible to implement in interactive systems where required CPU time is not known.

II BTECH ISEM R20

WISE Page 20

 The processer should know in advance how much time process will take.

PROGRAM:

/* C Program to implement SJF CPU Scheduling Algorithm */

#include<stdio

.h> void main()

{

int

bt[20],p[20],wt[20],tat[20],i,j,n,total=0,pos,t

emp; float avg_wt,avg_tat;

printf("Enter number of

process:"); scanf("%d",&n);

printf("\nEnter Burst

Time:\n"); for(i=0;i<n;i++)

{

printf("p%d:",i+1);

scanf("%d",&bt

[i]); p[i]=i+1;

}

for(i=0;i<n;i++)

{

pos=i;

for(j=i+1;j<n;j++)

{

if(bt[j]<bt[pos])

pos=j;

}

temp=bt[i];

bt[i]=bt[po

s];

bt[pos]=te

mp;

temp=p[i];

II BTECH ISEM R20

WISE Page 21

p[i]=p[pos]

;

p[pos]=tem

p;

}

wt[0]=

0;

for(i=1;i<n;i++)

{

wt[i]=0;

for(j=0;j<i;j

++)

wt[i]+=bt[j];

total+=wt[i];

}

avg_wt=(float)total

/n; total=0;

printf("\nProcess\t Burst Time \tWaiting

Time\tTurnaround Time"); for(i=0;i<n;i++)

{

tat[i]=bt[i]+wt

[i];

total+=tat[i];

printf("\np%d\t\t %d\t\t %d\t\t\t%d",p[i],bt[i],wt[i],tat[i]);

avg_tat=(float)total/n;

printf("\n\nAverage Waiting

Time=%f",avg_wt); printf("\nAverage

Turnaround Time=%f\n",avg_tat);

}

OUTPUT:

Enter number of

process: 4 Enter Burst

Time:

P1:4

II BTECH ISEM R20

WISE Page 22

P2:8

P3:3

P4:7

Process Burst Time Waiting

Time

Turnaround

Time

P3 3 0 3

P1 4 3 7

P4 7 7 14

P2 8 14 22

Average Waiting

Time=6.000000 Average

Turnaround Time=11.500000

c) FCFS:

DESCRIPTION:

 Jobs are executed on first come, first serve basis.

 It is a non-preemptive, pre-emptive scheduling algorithm.

 Easy to understand and implement.

 Its implementation is based on FIFO queue.

 Poor in performance as average wait time is high.

PROGRAM:

/* C Program to implement FCFS CPU Scheduling

Algorithm */

#include<stdio

.h> main()

{

int n,a[10],b[10],t[10],w[10],g[10],i,m;

II BTECH ISEM R20

WISE Page 23

float

att=0,awt=0;

for(i=0;i<10;i++)

{

a[i]=0; b[i]=0; w[i]=0; g[i]=0;

}

printf("enter the number of

process"); scanf("%d",&n);

printf("enter the burst

times"); for(i=0;i<n;i++)

scanf("%d",&b[i]);

printf("\nenter the arrival

times"); for(i=0;i<n;i++)

scanf("%d",&a[i]);

g[0]=0;

for(i=0;i<10;i+

+)

g[i+1]=g[i]+b

[i];

for(i=0;i<n;i+

+)

{

w[i]=g[i]-a[i];

t[i]=g[i+1]-

a[i];

awt=awt+w[

i];

att=att+t[i];

}

awt

=awt/n;

att=att/n;

printf("\n\tprocess\twaiting time\tturn arround

time\n"); for(i=0;i<n;i++)

{

II BTECH ISEM R20

WISE Page 24

printf("\tp%d\t\t%d\t\t%d\n",i,w[i],t[i]);

}

printf("the average waiting time is

%f\n",awt); printf("the average turn

around time is %f\n",att);

}

OUTPUT:

enter the number of

process 4 enter the burst

times

4

9

8

3

enter the arrival times

0

2

4

3

process waiting

time

turn arround

time

p0 0 4

p1 2 11

p2 9 17

p3 18 21

the average waiting time is 7.250000

the average turn around time is 13.250000

II BTECH ISEM R20

WISE Page 25

d) PRIORITY:

DESCRIPTION:

 Priority scheduling is a non-preemptive algorithm and one of the most common

scheduling algorithms in batch systems.

 Each process is assigned a priority. Process with highest priority is to be executed first and so

on.

 Processes with same priority are executed on first come first served basis.

 Priority can be decided based on memory requirements, time requirements or any other

resource requirement.

PROGRAM:

/* C Program to implement Priority CPU Scheduling Algorithm */

int main()

{

int

bt[20],p[20],wt[20],tat[20],pr[20],i,j,n,total=0,pos,temp,avg_wt,avg_t

at; printf("Enter Total Number of Process:");

scanf("%d",&n);

printf("\nEnter Burst Time and

Priority\n"); for(i=0;i<n;i++)

{

printf("\nP[%d]\n",i

+1); printf("Burst

Time:");

II BTECH ISEM R20

WISE Page 26

scanf("%d",&bt[i]);

printf("Priority:");

scanf("%d",&pr[i])

; p[i]=i+1;

}

for(i=0;i<n;i++)

{

pos=i;

for(j=i+1;j<n;j++)

{

if(pr[j]<pr[po

s]) pos=j;

}

temp=pr[i];

pr[i]=pr[po

s];

pr[pos]=te

mp;

temp=bt[i];

bt[i]=bt[po

s];

bt[pos]=te

mp;

temp=p[i];

p[i]=p[pos

];

p[pos]=te

mp;

}

wt[0]=

0;

for(i=1;i<n;i++)

II BTECH ISEM R20

WISE Page 27

{

wt[i]=0;

for(j=0;j<i;j

++)

wt[i]+=bt[j];

total+=wt[i];

}

avg_wt=total

/n; total=0;

printf("\nProcess\t Burst Time \tWaiting

Time\tTurnaround Time"); for(i=0;i<n;i++)

{

tat[i]=bt[i]+wt

[i];

total+=tat[i];

printf("\nP[%d]\t\t %d\t\t %d\t\t\t%d",p[i],bt[i],wt[i],tat[i]);

}

avg_tat=total/n;

printf("\n\nAverage Waiting

Time=%d",avg_wt); printf("\nAverage

Turnaround Time=%d\n",avg_tat); return 0;

OUTPUT:

Enter Total Number of

Process: 4 Enter Burst Time

and Priority:

P[1]

Burst

II BTECH ISEM R20

WISE Page 28

Time: 6

Priority:3

P[2]

Burst

Time: 2

Priority:2

P[3]

Burst Time:

14 Priority:1

P[4]

Burst

Time: 6

Priority:4

Process Burst Time Waiting Time Turnaround

Time

P[3] 14 0 14

P[2] 2 14 16

P[1] 6 16 22

P[4] 6 22 28

Average Waiting

Time=13 Average

Turnaround Time=20

II BTECH ISEM R20

WISE Page 29

int execvp (const char *file, char *const argv[]);

int execv(const char *path, char *const argv[]);

EXERCISE-6

AIM: Multiprogramming Memory management Implementation of fork(),wait(),exec() and

exit(),system calls

DESCRIPTION:

FORK():

Fork system call use for creates a new process, which is called child process, which runs

concurrently with process (which process called system call fork) and this process is called

parent process. After a new child process created, both processes will execute the next

instruction following the fork() system call. A child process uses the same pc(program counter),

same CPU registers, same open files which use in the parent process.

EXEC():

The exec family of functions replaces the current running process with a new process. It can be

used to run a C program by using another C program. It comes under the header file unistd.h. There

are many members in the exec family which are shown below with examples.

 execvp : Using this command, the created child process does not have to run the same

program as the parent process does. The exec type system calls allow a process to run any

program files, which include a binary executable or a shell script .

Syntax:

file: points to the file name associated with the file being executed.

argv: is a null terminated array of character pointers.

 execv : This is very similar to execvp() function in terms of syntax as well. The syntax of

execv() is as shown below:

Syntax:

path: should point to the path of the file being executed.

argv[]: is a null terminated array of character pointers.

II BTECH ISEM R20

WISE Page 30

int execlp(const char *file, const char *arg,.../* (char *) NULL */);

int execl(const char *path, const char *arg,.../* (char *) NULL */);

int execvpe(const char *file, char *const argv[],char *const envp[]);

Syntax:

int execle(const char *path, const char *arg, .../*, (char *) NULL,

char * const envp[] */);

 execlp and execl : These two also serve the same purpose but the syntax of of them are a bit

different which is as shown below:Syntax:

 execvpe and execle : These two also serve the same purpose but the syntax of them are a

bit different from all the above members of exec family. The synatxes of both of them are

shown below :

Syntax:

WAIT() :

A call to wait() blocks the calling process until one of its child processes exits or a signal is

received. After child process terminates, parent continues its execution after wait system call

instruction.

Child process may terminate due to any of these:

 It calls exit();

 It returns (an int) from main

 It receives a signal (from the OS or another process) whose default action is to terminate.

EXIT():

It terminates the calling process without executing the rest code which is after the exit()

function.

https://www.geeksforgeeks.org/understanding-exit-abort-and-assert/

II BTECH ISEM R20

WISE Page 31

FORK():

PROGRAM:

/* C Program to implement Fork() system calls */

#include <stdio.h>

#include

<sys/types.h>

#include

<unistd.h> void

forkexample()

{

if (fork() == 0)

printf("Hello from Child!\n");

else

printf("Hello from Parent!\n");

}

II BTECH ISEM R20

WISE Page 32

Hello from Child!

Hello from Parent!

int main()

{

forkexample

(); return 0;

}

OUTPUT:

EXEC():

/* C Program to implement Exec() system calls */

PROGRAM:

#include <stdio.h>

#include

<sys/types.h>

#include

<unistd.h>

#include

<stdlib.h>

#include <errno.h>

#include

<sys/wait.h> int

main()

{

pid_t pid;

int ret = 1;

int status;

pid =

II BTECH ISEM R20

WISE Page 33

fork(); if

(pid == -1)

{

printf("can't fork, error

occured\n");

exit(EXIT_FAILURE);

}

else if (pid == 0)

{

printf("child process, pid =

%u\n",getpid());

execv("ls",argv_list);

exit(0);

}

else{

printf("parent process, pid =

%u\n",getppid()); if (waitpid(pid,

&status, 0) > 0)

{

if (WIFEXITED(status) &&

!WEXITSTATUS(status)) printf("program

execution successfull\n");

else if (WIFEXITED(status) && WEXITSTATUS(status))

{

if (WEXITSTATUS(status) == 127)

{

printf("execv failed\n");

}

else

II BTECH ISEM R20

WISE Page 34

parent process, pid = 11523

child process, pid = 14188

Program execution successfull

printf("program terminated

normally," " but returned a non-

zero status\n");

}

else

printf("program didn't terminate normally\n");

}

else

{

printf("waitpid() failed\n");

}

exit(0);

}

return 0;

}

OUTPUT:

WAIT() :

II BTECH ISEM R20

WISE Page 35

PROGRAM:

/* C Program to implement Wait() system calls */

#include<stdio.h>

#include<stdlib.h>

#include<sys/wait.

h>

#include<unistd.h

>

int main()

{

pid_t cpid;

if (fork()== 0)

exit(0

); else

cpid = wait(NULL);

printf("Parent pid = %d\n",

getpid()); printf("Child pid =

%d\n", cpid);

return 0;

}

EXIT():

PROGRAM:

II BTECH ISEM R20

WISE Page 36

START

/* C Program to implement Exit() system calls */

#include

<stdio.h>

#include

<stdlib.h> int

main(void)

{

printf("STAR

T"); exit(0);

printf("End of program");

}

OUTPUT:

II BTECH ISEM R20

WISE Page 37

 EXERCISE-7

AIM: Simulate the following

a) Multiprogramming with a fixed number of tasks (MFT)

b) Multiprogramming with a variable number of tasks (MVT)

DESCRIPTION:

MFT : Multiprogramming with a Fixed number of Tasks is one of the old memory management

techniques in which the memory is partitioned into fixed size partitions and each job is assigned to a

partition. The memory assigned to a partition does not change.

MVT : Multiprogramming with a Variable number of Tasks is the memory management technique

in which each job gets just the amount of memory it needs. That is, the partitioning of memory is

dynamic and changes as jobs enter and leave the system. MVT is a more ``efficient'' user of

resources. MFT suffers with the problem of internal fragmentation and MVT suffers with external

fragmentation.

PROGRAM

/* C Program to implement Multiprogramming with a fixed number of tasks (MFT)*/

#include<stdio.

h>

#include<conio

.h> main()

{

int ms, bs, nob, ef,n,

mp[10],tif=0; int i,p=0;

clrscr();

printf("Enter the total memory available (in

Bytes) -- "); scanf("%d",&ms);

printf("Enter the block size (in

Bytes) -- "); scanf("%d", &bs);

nob=ms/bs;

ef=ms -

nob*bs;

printf("\nEnter the number of

processes -- "); scanf("%d",&n);

for(i=0;i<n;i++)

II BTECH ISEM R20

WISE Page 38

{

printf("Enter memory required for process %d (in

Bytes)-- ",i+1); scanf("%d",&mp[i]);

}

printf("\nNo. of Blocks available in memory -- %d",nob);

printf("\n\nPROCESS\tMEMORY REQUIRED\t ALLOCATED\tINTERNAL

FRAGMENTATION");

for(i=0;i<n && p<nob;i++)

{

printf("\n

%d\t\t%d",i+1,mp[i]);

if(mp[i] > bs)

printf("\t\tNO\t\t---

"); else

{

printf("\t\tYES\t%d",bs-

mp[i]); tif = tif + bs-

mp[i];

p++;

}

}

if(i<n)

printf("\nMemory is Full, Remaining Processes cannot be accomodated");

printf("\n\nTotal Internal Fragmentation is %d",tif);

printf("\nTotal External Fragmentation is

%d",ef); getch();

OUTPUT:

Enter the total memory available (in

Bytes) -- 1000 Enter the block size (in

Bytes)-- 300

Enter the number of processes – 5

II BTECH ISEM R20

WISE Page 39

Enter memory required for process 1 (in

Bytes) -- 275 Enter memory required for

process 2 (in Bytes) -- 400 Enter memory

required for process 3 (in Bytes) -- 290 Enter

memory required for process 4 (in Bytes) --

293 Enter memory required for process 5 (in

Bytes) -- 100 No. of Blocks available in

memory -- 3

PROCESS MEMORY-REQUIRED ALLOCATED INTERNAL-FRAGMENTATION

Memory is Full, Remaining Processes cannot be

accommodated Total Internal Fragmentation is 42

Total External Fragmentation is 100

MVT :

PROGRAM:

/* C Program to implement Multiprogramming with a variable number of tasks (MVT)*/

#include<stdio.h>

#include<conio

.h> main()

{

int ms,mp[10],i,

temp,n=0; char ch =

'y';

clrscr();

printf("\nEnter the total memory available (in

Bytes)-- "); scanf("%d",&ms);

temp=ms;

1 27

5

YE

S

25

2 40

0

NO -----

3 29

0

YE

S

10

4 29

3

YE

S

7

II BTECH ISEM R20

WISE Page 40

for(i=0;ch=='y';i++,n

++)

{

printf("\nEnter memory required for process %d (in

Bytes) -- ",i+1); scanf("%d",&mp[i]);

if(mp[i]<=temp)

{

printf("\nMemory is allocated for Process

%d ",i+1); temp = temp - mp[i];

}

else

{

printf("\nMemory is

Full"); break;

}

printf("\nDo you want to

continue(y/n) -- "); scanf(" %c",

&ch);

}

printf("\n\nTotal Memory Available -- %d",

ms); printf("\n\n\tPROCESS\t\t MEMORY

ALLOCATED "); for(i=0;i<n;i++)

printf("\n \t%d\t\t%d",i+1,mp[i]);

printf("\n\nTotal Memory Allocated is

%d",ms-temp); printf("\nTotal External

Fragmentation is %d",temp); getch();

}

OUTPUT

Enter the total memory available (in Bytes) -

- 1000 Enter memory required for process 1

(in Bytes) -- 400 Memory is allocated for

II BTECH ISEM R20

WISE Page 41

Process 1

Do you want to continue(y/n) -- y

Enter memory required for process 2 (in

Bytes) -- 275 Memory is allocated for

Process 2

Do you want to continue(y/n) -- y

Enter memory required for process 3 (in

Bytes) -- 550 Memory is Full

Total Memory Available --

1000 PROCESS MEMORY-

ALLOCATED 1400

2 275

Total Memory Allocated is 675

Total External Fragmentation is 325

II BTECH ISEM R20

WISE Page 42

 EXERCISE-8

AIM: Simulate the Banker’s algorithm for Dead Lock Avoidance

DESCRIPTION:

The banker’s algorithm is a resource allocation and deadlock avoidance algorithm that tests for safety
by simulating the allocation for predetermined maximum possible amounts of all resources, then
makes an “s-state” check to test for possible activities, before deciding whether allocation should be
allowed to continue.
Following Data structures are used to implement the Banker’s Algorithm:

Let ‘n’ be the number of processes in the system and ‘m’ be the number of resources types.

Available :

 It is a 1-d array of size ‘m’ indicating the number of available resources of each type.

 Available[j] = k means there are ‘k’ instances of
resource type Rj Max :
 It is a 2-d array of size ‘n*m’ that defines the maximum demand of each process in a system.

 Max[i, j] = k means process Pi may request at most ‘k’ instances of resource type Rj.

Allocation :

 It is a 2-d array of size ‘n*m’ that defines the number of resources of each type
currently allocated to each process.

 Allocation[i, j] = k means process Pi is currently allocated ‘k’ instances of
resource type Rj Need :
 It is a 2-d array of size ‘n*m’ that indicates the remaining resource need of each process.

 Need [i, j] = k means process Pi currently allocated ‘k’ instances of resource type Rj
 Need [i, j] = Max [i, j] – Allocation [i, j]

PROGRAM:

/* C Program to implement Dead Lock Avoidance using Banker’s algorithm */

#include <stdio.h>

#include <stdlib.h>

int main()

{

II BTECH ISEM R20

WISE Page 43

int Max[10][10], need[10][10], alloc[10][10], avail[10], completed[10], safeSequence[10];

int p, r, i, j, process, count;

count = 0;

printf("Enter the no of processes : ");

scanf("%d", &p);

for(i = 0; i< p; i++)

completed[i] = 0;

printf("\n\nEnter the no of resources : ");

scanf("%d", &r);

printf("\n\nEnter the Max Matrix for each process : ");

for(i = 0; i < p; i++)

{

printf("\nFor process %d : ", i + 1);

for(j = 0; j < r; j++)

scanf("%d", &Max[i][j]);

}

printf("\n\nEnter the allocation for each process : ");

for(i = 0; i < p; i++)

{

printf("\nFor process %d : ",i + 1);
for(j = 0; j < r; j++)

II BTECH ISEM R20

WISE Page 44

scanf("%d", &alloc[i][j]);

}

printf("\n\nEnter the Available Resources : ");

for(i = 0; i < r; i++)

scanf("%d", &avail[i]);

for(i = 0; i < p; i++)

for(j = 0; j < r; j++)

need[i][j] = Max[i][j] - alloc[i][j];

do

{

printf("\n Max matrix:\tAllocation matrix:\n");

for(i = 0; i < p; i++)

{

for(j = 0; j < r; j++)

printf("%d ", Max[i][j]);

printf("\t\t");

for(j = 0; j < r; j++)

printf("%d ", alloc[i][j]);

printf("\n");

}

II BTECH ISEM R20

WISE Page 45

process = -1;

for(i = 0; i < p; i++)
{

if(completed[i] == 0)//if not completed

{

process = i ;

for(j = 0; j < r; j++)

{

if(avail[j] < need[i][j])

{

process = -1;

break;

}

}

}

if(process != -1)

break;

}

if(process != -1)

{

printf("\nProcess %d runs to completion!", process + 1);

safeSequence[count] = process + 1;

count++;

for(j = 0; j < r; j++)

II BTECH ISEM R20

WISE Page 46

{

avail[j] += alloc[process][j];

alloc[process][j] = 0;

Max[process][j] = 0;

completed[process] = 1;

}

}

}

while(count != p && process != -1);

if(count == p)

{

printf("\nThe system is in a safe state!!\n");

printf("Safe Sequence : < ");

for(i = 0; i < p; i++)

printf("%d ", safeSequence[i]);

printf(">\n");

}

else

printf("\nThe system is in an unsafe state!!");

}

OUTPUT:

Enter the no of processes : 5

II BTECH ISEM R20

WISE Page 47

Enter the no of resources : 3

Enter the Max Matrix for each process :

For process 1 : 7

5

3

For process 2 : 3

2

2

For process 3 : 7
0

2

For process 4 : 2

2

2

For process 5 : 4

3

3

Enter the allocation for each process :

For process 1 : 0

1

0

For process 2 : 2

0

0

II BTECH ISEM R20

WISE Page 48

Process 3 runs to completion!

Process 4 runs to completion!

completion

!

For process 3 : 3

0

2

For process 4 : 2

1

1

For process 5 : 0

0

2

Enter the Available Resources : 3

3

2

Max matrix: Allocation matrix:

7 5 3 0 1 0

3 2 2 2 0 0

7 0 2 3 0 2

2 2 2 2 1 1

4 3 3 0 0 2

Process 2 runs to

completion! Max matrix:

 Allocation

matrix:

7 5 3 0 1 0

0 0 0 0 0 0

7 0 2 3 0 2

2 2 2 2 1 1

4 3 3 0 0 2

II BTECH ISEM R20

WISE Page 49

Max matrix: Allocation matrix:

Process 5 runs to

completion! The system is in

a safe state!!

7 5 3 0 1 0

0 0 0 0 0 0

0 0 0 0 0 0

2 2 2 2 1 1

4 3 3 0 0 2

7 5 3 0 1 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

4 3 3 0 0 2

Process 1 runs

to

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

4 3 3 0 0 2

II BTECH ISEM R20

WISE Page 50

EXERCISE-9

AIM: Simulate the Banker’s algorithm for Dead Lock Prevention

DESCRIPTION: We can prevent Deadlock by eliminating any of the above four condition.

 Eliminate Mutual Exclusion : It is not possible to dis-satisfy the mutual exclusion

because some resources, such as the tap drive and printer, are inherently non-shareable.

 Eliminate Hold and wait: Allocate all required resources to the process before start of its

execution, this way hold and wait condition is eliminated but it will lead to low device

utilization.

 Eliminate No Preemption: Preempt resources from process when resources required by

other high priority process.

 Eliminate Circular Wait: Each resource will be assigned with a numerical number. A

process can request for the resources only in increasing order of numbering.

PROGRAM:

/* C Program to implement Dead Lock Prevention using Banker’s algorithm */

#include<stdio.h

> void main()

{

int

max[10][10],a1[10][10],av[10],i,j,k,m,n,ne[10][10],flag=

0; printf("\nEnter the matrix dimensions:");

scanf("%d%d",&m,&n);

printf("\n Enter the maximum

matrix:\n"); for(i=0;i<m;i++)

II BTECH ISEM R20

WISE Page 51

{

for(j=0;j<n;j++)

{

scanf("%d",&max[i][j]);

}

}

printf("\n Enter allocated

matrix:\n"); for(i=0;i<m;i++)

{

for(j=0;j<n;j++)

{

scanf("%d",&a1[i][j]);

}

}

printf("\n The need

matrix:\n"); for(i=0;i<m;i++)

{

for(j=0;j<n;j++)

{

II BTECH ISEM R20

WISE Page 52

ne[i][j]=max[i][j]-a1[i][j];

printf("\t%d",ne[i][j]);

}

printf("\n");

}

printf("\n Enter available

matrix:\n"); for(i=0;i<n;i++)

scanf("%d",&av[i]);

printf("\n Maximum

matrix\n"); for(i=0;i<m;i++)

{

for(j=0;j<n;j++)

{

printf("\t%d",max[i][j]);

}

printf("\n");

}

printf("\n Allocated

matrix:\n"); for(i=0;i<m;i++)

{

II BTECH ISEM R20

WISE Page 53

for(j=0;j<n;j++)

{

printf("\t%d",a1[i][j]);

}

printf("\n");

}

printf("\n Available

matrix:\n"); for(i=0;i<n;i++)

{

printf("%d\t",av[i]);

}

for(i=0;i<m;i++)

{

for(j=0;j<n;j++)

{

if(av[i]>=ne[i][j])

flag=1;

else

flag=0;

}

II BTECH ISEM R20

WISE Page 54

}

if(flag==0)

printf("\n Unsafe

state"); else

printf("\n safe state");

}

OUTPUT:

Enter the matrix

dimensions:3 3 Enter the

maximum matrix:

3 6 8

4 3 3

3 4 4

Enter allocated

matrix: 2 2 3

2 0 3

1 2 4

The need

matrix: 1 4 5

2 3 0

2 2 0

II BTECH ISEM R20

WISE Page 55

Enter available

matix: 2 3 0

Maximum

matrix:

3 6 8

4 3 3

3 4 4

Allocated

matrix: 2 2 3

2 0 3

1 2 4

Available

matrix: 2 3 0

safe state

II BTECH ISEM R20

WISE Page 56

 EXERCISE-10

AIM: Simulate the following Page Replacement algorithms

a) FIFO b)LRU c)LFU

DESCRIPTION:

a) FIFO :

This is the simplest page replacement algorithm. In this algorithm, operating system

keeps track of all pages in the memory in a queue, oldest page is in the front of the queue. When a

page needs to be replaced page in the front of the queue is selected for removal.

PROGRAM:

/* C Program to implement FIFO Page Replacement algorithms */

#include<stdio.h> int main()

{

int

i,j,n,a[50],frame[10],no,k,avail,count=0;

printf("\n ENTER THE NUMBER OF

PAGES:\n");

scanf("%d",&n);

printf("\n ENTER THE PAGE NUMBER :\n");

for(i=1;i<=n;i+

+)

scanf("%d",&a[

i]);

printf("\n ENTER THE NUMBER OF FRAMES :");

scanf("%d",&n

o);

for(i=0;i<no;i

++)

II BTECH ISEM R20

WISE Page 57

frame[i]=

-1; j=0;

printf("\tref string\t page

frames\n"); for(i=1;i<=n;i++)

{

printf("%d\t\t",a[i]);

avail=0;

for(k=0;k<no;k++)

if(frame[k]==a[i])

avail=1;

if (avail==0)

{

frame[j]=a[i];

j=(j+1)%no;

count++;

for(k=0;k<no;k

++)

printf("%d\t",frame[k]);

}

printf("\n");

}

printf("Page Fault Is

%d",count); return 0;

}

OUTPUT:

ENTER THE NUMBER OF PAGES: 20

ENTER THE PAGE NUMBER : 7 0 1 2 0 3 0 4 2 3 0 3

2 1 2 0 1 7 0 1 ENTER THE NUMBER OF FRAMES : 3

II BTECH ISEM R20

WISE Page 58

Ref string Page frames

7 7 -1 -1

0 7 0 -1

1 7 0 1

2 2 0 1

0

3 2 3 1

0 2 3 0

4 4 3 0

2 4 2 0

3 4 2 3

0 0 2 3

3

2

1 0 1 3

2 0 1 2

0

1

7 7 1 2

0 7 0 2

1 7 0 1

Page Fault Is 15

II BTECH ISEM R20

WISE Page 59

b) LRU:

On a page fault, the frame that was least recently used in replaced.

PROGRAM:

/* C Program to implement LRU Page Replacement algorithms */

#include<stdio

.h> main()

{

int

q[20],p[50],c=0,c1,d,f,i,j,k=0,n,r,t,b[20],c2[20]

; printf("Enter no of pages:");

scanf("%d",&n);

printf("Enter the reference

string:"); for(i=0;i<n;i++)

scanf("%d",&p[i]);

printf("Enter no of

frames:");

scanf("%d",&f);

q[k]=p[k];

printf("\n\t%d\n",q[k]

); c++;

k++;

for(i=1;i<n;i++)

{

c1=0;

for(j=0;j<f;j++)

{

if(p[i]!=q[

II BTECH ISEM R20

WISE Page 60

j]) c1++;

}if(c1==f)

{

c++;

if(k<f)

{

q[k]=p[i

]; k++;

for(j=0;j<k;j++

)

printf("\t%d",q[

j]); printf("\n");

}

else

{

for(r=0;r<f;r++)

{

c2[r]=0;

for(j=i-1;j<n;j--)

{

if(q[r]!=p[

j])

c2[r]++;

else

brea

k;

}

}

for(r=0;r<f;r

II BTECH ISEM R20

WISE Page 61

++)

b[r]=c2[r];

for(r=0;r<f;r

++)

{

for(j=r;j<f;j++)

{

if(b[r]<b[j])

{

t=b[r];

b[r]=b[j

];

b[j]=t;

}

}

}

for(r=0;r<f;r++)

{

if(c2[r]==b[0])

q[r]=p[i];

printf("\t%d",q[

r]);

}

printf("\n");

}

}

}

printf("\nThe no of page faults is %d",c);

II BTECH ISEM R20

WISE Page 62

}

OUTPUT:

Enter no of pages:10

Enter the reference string:7 5 9 4 3 7

9 6 2 1 Enter no of frames:3

7

7 5

7 5 9

4 5 9

4 3 9

4 3 7

9 3 7

9 6 7

9 6 2

1 6 2

The no of page faults is 10

c) LFU:

Pages with a current copy on disk are first choice for pages to be removed when more

memory is needed. To facilitate Page Replacement Algorithms, a table of valid or invalid bits (also

called dirty bits) is maintained.

PROGRAM:

/* C Program to implement LFU Page Replacement algorithms */

http://faculty.salina.k-state.edu/tim/ossg/Memory/virt_mem/page_replace.html#page-replace

II BTECH ISEM R20

WISE Page 63

#include<stdio.h>

#include<conio.h>

int fr[3];

void main()

{

void display();

int p[12]={2,3,2,1,5,2,4,5,3,2,5,2},i,j,fs[3];

int index,k,l,flag1=0,flag2=0,pf=0,frsize=3;

clrscr();

for(i=0;i<3;i++)

{

fr[i]=-1;

}

for(j=0;j<12;j++)

{

flag1=0,flag2=0;

for(i=0;i<3;i++)

{

if(fr[i]==p[j])

{

flag1=1;

flag2=1;

II BTECH ISEM R20

WISE Page 64

break;

}

}

if(flag1==0)

{

for(i=0;i<3;i++)

{

if(fr[i]==-1)

{

fr[i]=p[j];

flag2=1;

break;

}

}

}

if(flag2==0)

{

for(i=0;i<3;i++)

fs[i]=0;

II BTECH ISEM R20

WISE Page 65

for(k=j-1,l=1;l<=frsize-1;l++,k--)

{

for(i=0;i<3;i++)

{

if(fr[i]==p[k])

fs[i]=1;

}

}

for(i=0;i<3;i++)

{

if(fs[i]==0)

index=i;

}

fr[index]=p[j];

pf++;

}

display();

}

printf("\n no of page faults :%d",pf);

getch();

II BTECH ISEM R20

WISE Page 66

}

void display()

{

int i;

printf("\n");

for(i=0;i<3;i++)

printf("\t%d",fr[i]);

OUTPUT :

2 -1 -1

2 3 -1

2 3 -1

2 3 1

2 5 1

2 5 1

2 5 4

2 5 4

3 5 4

3 5 2

3 5 2

}

II BTECH ISEM R20

WISE Page 67

3 5 2

no of page faults : 4

II BTECH ISEM R20

WISE Page 68

EXERCISE-11

AIM: Simulate the following File allocation strategies

a) SEQUENCED DESCRIPTION:

Each file occupies a contiguous set of blocks on the disk. For example, if a file requires

n blocks and is given a block b as the starting location, then the blocks assigned to the file will be:

b, b+1, b+2,……b+n-1. This means that given the starting block address and the length of the file

(in terms of blocks required), we can determine the blocks occupied by the file.

The directory entry for a file with contiguous allocation contains

 Address of starting block

 Length of the allocated portion.

PROGRAM:

/* C Program to implement Sequenced File allocation strategies */

#include <

stdio.h>

#include<conio

.h> void main()

{

int f[50], i, st, len, j, c, k,

count = 0; clrscr();

for(i=0;i<50;i++)

f[i]=0;

printf("Files Allocated are

: \n"); x: count=0;

printf(“Enter starting block and length of

files: ”); scanf("%d%d", &st,&len);

for(k=st;k<(st+len);k++)

if(f[k]==0)

count++;

if(len==cou

nt)

II BTECH ISEM R20

WISE Page 69

{

for(j=st;j<(st+len);j+

+) if(f[j]==0)

{

f[j]=

1;

printf("%d\t%d\n",j,f[j]);

}

if(j!=(st+len-1))

printf(” The file is allocated to disk\n");

}

else

printf(” The file is not allocated \n");

printf("Do you want to enter more file(Yes -

1/No - 0)"); scanf("%d", &c);

if(c==

1) goto

x; else

exit();

getch();

}

OUTPUT:

Files Allocated are :

Enter starting block and length of

files:17 4 17 1

18 1

19 1

20 1

The file is allocated to disk

II BTECH ISEM R20

WISE Page 70

Do you want to enter more file(Yes - 1/No

– 0) 1 Enter starting block and length of

files:21 3

21 1

22 1

23 1

The file is allocated to disk

Do you want to enter more file(Yes - 1/No – 0) 0

b) INDEXED :

A special block known as the Index block contains the pointers to all the blocks occupied by a

file. Each file has its own index block. The ith entry in the index block contains the disk address of

the ith file block. The directory entry contains the address of the index block as shown in the image

PROGRAM:

/* C Program to implement Indexed File allocation strategies */

#include<stdio.h>

#include<conio.h>

#include<stdlib.h> void main()

{

int f[50], index[50],i, n, st, len, j, c, k,

ind,count=0; clrscr();

for(i=0;i<50;i+

+) f[i]=0;

x:printf("Enter the index

block: "); scanf("%d",&ind);

if(f[ind]!=1)

{

printf("Enter no of blocks needed and no of files for the index %d on

the disk : \n", ind);

scanf("%d",&n);

}

II BTECH ISEM R20

WISE Page 71

else

{

printf("%d index is already allocated

\n",ind); goto x;

}

y: count=0;

for(i=0;i<n;i

++)

{

scanf("%d", &index[i]);

if(f[index[i]]=

=0) count++;

}

if(count==n)

{

for(j=0;j<n;j++)

f[index[j]]=1;

printf("Allocated\n"

); printf("File

Indexed\n");

for(k=0;k<n;k++)

printf("%d ---- >%d : %d\n",ind,index[k],f[index[k]]);

}

else

{

printf("File in the index is already

allocated \n"); printf("Enter another file

indexed");

goto y;

}

II BTECH ISEM R20

WISE Page 72

printf("Do you want to enter more file(Yes -

1/No - 0)"); scanf("%d", &c);

if(c==

1) goto

x; else

exit(0)

;

getch();

}

OUTPUT:

Enter the index block: 5

Enter no of blocks needed and no of files for the index 5

on the disk : 4

1 2 3 4

Allocated

File

Indexed

5 > 1 : 1

5 > 2 : 1

5 > 3 : 1

5 > 4 : 1

Do you want to enter more file(Yes - 1/No -

0) 1 Enter the index block: 4

4 index is already

allocated Enter the index

block: 6

Enter no of blocks needed and no of files for the index 6 on the disk :

1

2

File in the index is already

allocated Enter another file

indexed 6 Allocated

II BTECH ISEM R20

WISE Page 73

File Indexed

6 > 6 : 1

Do you want to enter more file(Yes - 1/No - 0) 0

c) LINKED :

Each file is a linked list of disk blocks which need not be contiguous. The disk blocks can be

scattered anywhere on the disk. The directory entry contains a pointer to the starting and the ending

file block. Each block contains a pointer to the next block occupied by the file.

PROGRAM:

/* C Program to implement Linked File allocation strategies */

#include<stdio.h>

#include<conio.h>

#include<stdlib.h>

void main()

{

int f[50], p,i, st, len, j, c,

k, a; clrscr();

for(i=0;i<50;i+

+) f[i]=0;

printf("Enter how many blocks already

allocated: "); scanf("%d",&p);

printf("Enter blocks already

allocated: "); for(i=0;i<p;i++)

{

scanf("%d",&

a); f[a]=1;

}

x: printf("Enter index starting block and

II BTECH ISEM R20

WISE Page 74

length: "); scanf("%d%d", &st,&len);

k=len;

if(f[st]==

0)

{

for(j=st;j<(st+k);j++)

{

if(f[j]==0)

{

f[j]=

1;

printf("%d ---- >%d\n",j,f[j]);

}

else

{

printf("%d Block is already

allocated \n",j); k++;

}

}

}

else

printf("%d starting block is already allocated

\n",st); printf("Do you want to enter more

file(Yes - 1/No - 0)"); scanf("%d", &c);

if(c==

1) goto

x; else

exit(0)

;

getch();

}

II BTECH ISEM R20

WISE Page 75

OUTPUT:

Enter how many blocks already

allocated: 3 Enter blocks already

allocated:1 3 5

Enter index starting block and

length: 2 4

2 > 1

3 Block is already

allocated 4 > 1

5 Block is already

allocated 6 > 1

7 > 1

Do you want to enter more file(Yes - 1/No - 0) 0

II BTECH ISEM R20

WISE Page 76

EXERCISE-12

 Write a C program that illustrates two processes communicating using shared memory

Description :

Shared memory is the fastest form of IPC available. Once the memory is mapped into the

address space of the processes that are sharing the memory region, no kernel involvement occurs

in passing data between the processes. What is normally required, however, is some form of

synchronization between the processes that are storing and fetching information to and from the

shared memory region. Shared memory is the most useful of the 3 structures. All the other IPC

structures have similar system calls. Shared memory is memory that is accessible to a number of

processes. By several orders of magnitude, it is the quickest way of sharing information among a

set of processes. Keep in mind that shared memory is available on all operating systems. Only

the calls will be different.

 Syntax :

 #include <sys/types.h>

 #include <sys/ipc.h>

 #include <sys/shm.h>

int shmget (key_t key, size_t size, int shmflg)

Algorithm :

 Step 1: Start

Step 2 : Create a shared memory using mhmget().

Step 3 : Store integer value in shared memory. (shmat())

Step 4 : Create a child process using fork().

Step 5 : Get a semaphore on shared memory using semget().

Step 6 : Increase the value of shared variable

Step 7 : Release the semaphore

Step 8 : Repeat step 4,5,6 in child process also.

Step 9 : Remove shared memory

Step 10: Stop

Program :

#include<stdio.h>

#include<sys/ipc.h>

#include<sys/stat.h>

#include<sys/msg.h>

#include<sys/sem.h>

#include<string.h>

int main()

II BTECH ISEM R20

WISE Page 77

{

 int shmid,sid=-1;

 int shmptr;

 pid_t pid;

 shmid=shmget(20,1024,0644|IPC_CREAT);

 shmptr=shmat(shmid,0,0);

 if(shmptr==1)

 printf("error\n");

 else

 printf("\nshared memory created\n");

 if(sid<0)

 {

 if((sid=shmget(30,1,IPC_CREAT|0644))<0)

 printf("\nsemaphore is created");

 else

 printf("semaphore is not created\n");

 }

 printf("\nenter integer value");

 scanf("%d",&shmptr);

 printf("the entered value is:%d\n",shmptr);

if((pid=fork())==0)

 {

 wait(sid);

 shmptr+=1;

 printf("child value is:%d\n",shmptr);

 signal(sid);

 }

 else if(pid>0)

 {

 shmptr-=1;

 printf("the parent value is :%d\n",shmptr);

 }

 }

Output :

[stu515@bvcits ~]$ cc w2a.c

[stu515@bvcits ~]$ a.out

Shared memory created

semaphore is created

enter integer value 41

II BTECH ISEM R20

WISE Page 78

the entered value is: 41

the parent value is: 40

the child value is: 42

[stu515@bvcits ~]$

Exercise-13

Write a C program to simulate producer and consumer problem usingsemaphores

SOURCE CODE:

#include<stdio.h>

int mutex=1,full=0,empty=3,x=0;

main()

{

 int n;

 void producer();

 void consumer();

 int wait(int);

 int signal(int);

 printf(“\n 1.Producer \n 2.Consumer \n 3.Exit”);

 while(1)

 {

 printf(“\n Enter your choice:”);

 scanf(“%d”,&n);

 switch(n)

 {

 case 1:

 if((mutex==1)&&(empty!=0))

 producer();

 else

 printf(“Buffer is full”);

 break;

 case 2:

 if((mutex==1)&&(full!=0))

 consumer();

 else

 printf(“Buffer is empty”);

 break;

 case 3:

 exit(0);

 break;

 }

 }

II BTECH ISEM R20

WISE Page 79

}

int wait(int s)

{

 return (--s);

}

int signal(int s)

{

 return(++s);

}

void producer()

{

 mutex=wait(mutex);

 full=signal(full);

 empty=wait(empty);

 x++;

 printf(“\n Producer produces the item %d”,x);

 mutex=signal(mutex);

}

void consumer()

{

 mutex=wait(mutex);

 full=wait(full);

 empty=signal(empty);

 printf(“\n Consumer consumes item %d”,x);

 x--;

 mutex=signal(mutex);

}

OUTPUT:

[examuser35@localhost Jebastin]$ cc pc.c

 1.Producer

 2.Consumer

 3.Exit

 Enter your choice:1

 Producer produces the item 1

 Enter your choice:1

 Producer produces the item 2

 Enter your choice:1

 Producer produces the item 3

 Enter your choice:1

 Buffer is full

II BTECH ISEM R20

WISE Page 80

 Enter your choice:2

 Consumer consumes item 3

 Enter your choice:2

 Consumer consumes item 2

 Enter your choice:2

 Consumer consumes item 1

 Enter your choice:2

 Buffer is empty

 Enter your choice:3

EXERCISE-14

Write C program to create a thread using pthreads library and let it run its function.

What is a Thread?

A thread is a single sequence stream within in a process. Because threads have some of the

properties of processes, they are sometimes called lightweight processes.

What are the differences between process and thread?

Threads are not independent of one other like processes as a result threads shares with other

threads their code section, data section and OS resources like open files and signals. But, like

process, a thread has its own program counter (PC), a register set, and a stack space.

Why Multithreading?

Threads are popular way to improve application through parallelism. For example, in a browser,

multiple tabs can be different threads. MS word uses multiple threads, one thread to format the

text, other thread to process inputs, etc.

Threads operate faster than processes due to following reasons:

1) Thread creation is much faster.

2) Context switching between threads is much faster.

3) Threads can be terminated easily

4) Communication between threads is faster.

A simple C program to demonstrate use of pthread basic functions

In main() we declare a variable called thread_id, which is of type pthread_t, which is an integer

used to identify the thread in the system. After declaring thread_id, we call pthread_create()

function to create a thread.

pthread_create() takes 4 arguments.

The first argument is a pointer to thread_id which is set by this function.

The second argument specifies attributes. If the value is NULL, then default attributes shall be

used.

The third argument is name of function to be executed for the thread to be created.

II BTECH ISEM R20

WISE Page 81

The fourth argument is used to pass arguments to the function, myThreadFun.

The pthread_join() function for threads is the equivalent of wait() for processes. A call to

pthread_join blocks the calling thread until the thread with identifier equal to the first argument

terminates.

Program:

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h> //Header file for sleep(). man 3 sleep for details.

#include <pthread.h>

// A normal C function that is executed as a thread

// when its name is specified in pthread_create()

void *myThreadFun(void *vargp)

{

 sleep(1);

 printf("Printing GeeksQuiz from Thread \n");

 return NULL;

}

int main()

{

 pthread_t thread_id;

 printf("Before Thread\n");

 pthread_create(&thread_id, NULL, myThreadFun, NULL);

 pthread_join(thread_id, NULL);

 printf("After Thread\n");

 exit(0);

}

Output:

gfg@ubuntu:~/$ cc multithread.c -lpthread

gfg@ubuntu:~/$./a.out

Before Thread

Printing GeeksQuiz from Thread

After Thread

gfg@ubuntu:~/$

II BTECH ISEM R20

WISE Page 82

EXERCISE-15

Write a C program to illustrate concurrent execution of threads using pthreads library.

A concurrent programming environment lets us designate tasks that can run in parallel. It also

lets us specify how we would like to handle the communication and synchronization issues that

result when concurrent tasks attempt to talk to each other and share data.

 Because most concurrent programming tools and languages have been the result of

academic research or have been tailored to a particular vendor’s products, they are often

inflexible and hard to use. Pthreads, on the other hand, is designed to work across multiple

vendors’ platforms and is built on top of the familiar UNIX C programming interface. Pthreads

gives you a simple and portable way of expressing multithreading in your programs.

Program:

#include<stdlib.h>

#include<pthread.h>

void *mythread1(void *vargp)

{

 int i;

 printf("thread1\n");

 for(i=1;i<=10;i++)

 printf("i=%d\n",i);

 printf("exit from thread1\n");

 return NULL;

}

void *mythread2(void *vargp)

{

 int j;

 printf("thread2 \n");

 for(j=1;j<=10;j++)

 printf("j=%d\n",j);

 printf("Exit from thread2\n");

 return NULL;

}

int main()

{

 pthread_t tid;

 printf("before thread\n");

 pthread_create(&tid,NULL,mythread1,NULL);

II BTECH ISEM R20

WISE Page 83

 pthread_create(&tid,NULL,mythread2,NULL);

 pthread_join(tid,NULL);

 pthread_join(tid,NULL);

 exit(0);

}

OUT PUT ::

$ cc w8.c – l pthread

$./a.out

thread1

i=1

i=2;

i=3

thread2

j=1

j=2

j=3

j=4

kj=5

j=6

j=7

j=8

i=4

i=5

i=6

i=7

i=8

i=9

i=10

exit from thread1

j=9

j=10

exit from thread2

	a) ROUND ROBIN:
	PROGRAM:
	OUTPUT:
	b) SJF:
	DESCRIPTION:
	PROGRAM:
	OUTPUT:
	DESCRIPTION:
	PROGRAM:
	OUTPUT:
	d) PRIORITY:
	PROGRAM:
	OUTPUT:
	EXERCISE-6
	DESCRIPTION:
	EXEC():
	Syntax:
	Syntax:
	Syntax:
	FORK():
	/* C Program to implement Fork() system calls */
	OUTPUT:
	/* C Program to implement Exec() system calls */
	OUTPUT:
	PROGRAM:
	EXIT():
	/* C Program to implement Exit() system calls */

	EXERCISE-7
	DESCRIPTION:
	PROGRAM
	OUTPUT:
	MVT :
	/* C Program to implement Multiprogramming with a variable number of tasks (MVT)*/
	OUTPUT

	EXERCISE-8
	DESCRIPTION:
	Available :
	Allocation :
	PROGRAM:

	OUTPUT:

	EXERCISE-9
	PROGRAM:

	EXERCISE-10
	PROGRAM:
	OUTPUT:
	b) LRU:
	PROGRAM:
	/* C Program to implement LRU Page Replacement algorithms */
	OUTPUT:

	c) LFU:
	PROGRAM:
	/* C Program to implement LFU Page Replacement algorithms */
	break;
	break;

	EXERCISE-11
	a) SEQUENCED DESCRIPTION:
	/* C Program to implement Sequenced File allocation strategies */
	OUTPUT:
	PROGRAM:
	/* C Program to implement Indexed File allocation strategies */
	OUTPUT:

	PROGRAM:
	/* C Program to implement Linked File allocation strategies */
	OUTPUT:

